Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.4.330

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis  

JANG, SU-YOEN (Department of Green Energy Engineering, Graduate School, Hoseo University)
RYU, CHEOL-HWI (Department of Green Energy Engineering, Graduate School, Hoseo University)
HWANG, GAB-JIN (Department of Green Energy Engineering, Graduate School, Hoseo University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.4, 2022 , pp. 330-336 More about this Journal
Abstract
In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.
Keywords
Hydrogen production; Water electrolysis; Alkaline water electrolysis; Ion exchange membrane; Aion exchange membrane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Li, N. Yu, F. Gellrich, A. K. Reumert, M. R. Kraglund, J. Dong, D. Aili, and J. Yang, "Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methyl-pyrrolidinium) for alkaline water electrolysis", J. Membr. Sci., Vol. 633, 2021, pp. 119418, doi: https://doi.org/10.1016/j.memsci.2021.119418.   DOI
2 J. W. Park, C. H. Ryu, and G. J. Hwang, "Study on commercially available anion exchange membrane for alkaline water eectrolysis", Membr. J., Vol. 31, No. 4, 2021, pp. 275-281, doi: https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.4.275.   DOI
3 I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: a review", Renew. Sustain. Energy Rev., Vol. 81, No. 2, 2018, pp. 1690-1704, doi: https://doi.org/10.1016/j.rser.2017.05.258.   DOI
4 A. Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, and S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", Int. J. Hydrogen Energy, Vol. 45, No. 53, 2020, pp. 28272-28284, doi: https://doi.org/10.1016/j.ijhydene.2020.07.202.   DOI
5 H. Ito, N. Kawaguchi, S. Someya, and T. Munakata, "Pressurized operation of anion exchange membrane water electrolysis", Electrochim. Acta, Vol. 297, 2019, pp. 188-196, doi: https://doi.org/10.1016/j.electacta.2018.11.077.   DOI
6 International Energy Agency (IEA), "Net zero by 2050: a roadmap for the global energy", IEA, 2021. Retrieved from https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.
7 H. Wendt and H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem., Vol. 19, 1989, pp. 605-610, doi: https://doi.org/10.1007/BF01022121.   DOI
8 H. S. Choi, C. H. Ryu, S. G. Lee, C. S. Byun, and G. J. Hwang, "Study on anion exchange membrane for the alkaline electrolycsis", Trans Korean Hydrogen New Energy Soc, Vol. 22, No. 2, 2011, pp. 184-190, doi: https://doi.org/10.7316/khnes.2011.22.2.184.   DOI
9 G. J. Hwang, B. M. Gil, and C. H. Ryu, "Preparation of the electrode using NiFe2O4 powder for the alkaline water electrolysis", J. Ind. Eng. Chem., Vol. 48, 2017, pp. 242-248, doi: https://doi.org/10.1016/j.jiec.2017.01.011.   DOI
10 P. Shirvanian, A. Loh, S. Sluijter, and X. Li, "Novel components in anion exchange membrane water electrolyzers (AEMWE's): status, challenges and future needs. A mini review", Electrochem. Com., Vol. 132, 2021, pp. 107140, doi: https://doi.org/10.1016/j.elecom.2021.107140.   DOI
11 G. J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., Vol. 132, No. 1, 1997, pp. 55-61, doi: https://doi.org/10.1016/S0376-7388(97)00040-9.   DOI
12 W. Hu, X. Cao, F. Wang, and Y. Zhang, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy, Vol. 22, No. 6, 1997, pp. 621-623, doi: https://doi.org/10.1016/S0360-3199(96)00191-7.   DOI
13 KMD, "Special report for 1.5℃ of global warming: hand-book", Korea Meteorological Agency, Korea, 2020.
14 G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans Korean Hydrogen New Energy Soc, Vol. 18, No. 1, 2007, pp. 95-108. Retrieved from http://manu.hydrogen.or.kr/archive/archiveViewContents.php.
15 G. J. Hwang and H. S. Choi, "Hydrogen production systems through water electrolysis", Membr. J., Vol. 27, No. 6, 2017, pp. 477-486, doi: https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.477.   DOI
16 V. M. Rosa, M. B. F. Santos, and E. P. da Silva, "New materials for water electrolysis diaphragms", Int. J. Hydrogen Energy, Vol. 20, No. 9, 1995, pp. 697-700, doi: https://doi.org/10.1016/0360-3199(94)00119-K.   DOI
17 J. G. Kim, S. H. Lee, S. I. Choi, C. S. Jin, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., Vol. 16, No. 5, 2010, pp. 756-762, doi: https://doi.org/10.1016/j.jiec.2010.07.007.   DOI
18 I. Vincent, A. Kruger, and D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis", Int. J. Hydrogen Energy, Vol. 42, No. 16, 2017, pp. 10752-10761, doi: https://doi.org/10.1016/j.ijhydene.2017.03.069.   DOI