Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries  

Lee, Jae-Myeong (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
Lee, Mi-Soon (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
Nahm, Ki-Seok (Department of Energy Storage and Conversion Engineering)
Jeon, Jae-Deok (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
Yoon, Young-Gi (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
Choi, Young-Woo (Hydrogen and Fuel Cell Center for Industry, Academy, and Laboratories, Korea Institute of Energy Research)
Publication Information
Membrane Journal / v.27, no.5, 2017 , pp. 415-424 More about this Journal
Abstract
Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.
Keywords
Vanadium Redox Flow Battery; Anion Exchange Membrane; Functional Group; Pore Filling Membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. M. Barragan, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauza, and B. Seoane, "Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies", J. Colloid Interface Sci., 333, 497 (2009).   DOI
2 D. H. Lee, Y. S. Kang, and J. H. Kim, "Olefin separation performances and coordination behaviors of facilitated transport membranes based on poly(styrene-b-isoprene-b-styrene)/silver salt complexes", Macromol. Res., 17, 104 (2009).   DOI
3 H. ohya, T. Ohto, T. Sawamura, H. Honda, K. Matsumoto, and Y. Negish, "Electrical-resistivity and permeabilities of composite membranes based on a cation exchange membrane", Denki Kagaku, 56, 34 (1988).
4 F de Korosy and J. Shorr, "Synthesis and characterization of IPA-co-HDO-co-(TPA/MA) anion-exchange membrane for all-vanadium redox flow battery", DeChema Mogr., 47, 477 (1992).
5 C. J. Rydh, "Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage", J. Power Sources, 80, 21 (1999).   DOI
6 A. Shibata and K. Sato, "Development of vanadium redox flow battery for electricity storage", Power Eng. J., 13, 130 (1993).
7 Ch. Fabjan, J. Garche, B, Hatter. L. Jorissen, C. Kolbeck, F. Philippi, G. Tomazic, and F. Wanger, "The vanadium redox-battery: an efficient storage unit for photovoltaic systems", Electrochim Acta, 47, 825 (2001).   DOI
8 T. Mohammadi and M. S. Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997).   DOI
9 Y. Choi, H. S. Lee, and T. S. Hwang, "Preparation and properties of heterogeneous cation exchange membrane for recovery of ammonium ion from waste water", Polymer (Korea), 30, 486 (2006).
10 G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996).   DOI
11 S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, and M. A. Hickner, "Cycling performance and efficiency of sulfonated poly (sulfone) membranes in vanadium redox flow batteries", Electrochem. Comm., 12, 1650 (2010).   DOI
12 T. Yamaguchi, H. Kuroki, and F. miyata, "DMFC performances using a pore-filling polymer electrolyte membrane for portable usages", Electrochem. Commun., 7, 730 (2005).   DOI
13 Y. M. Baek, N. S. Kwak, and T. S. Hwang, "Synthesis and characterization of vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate (VBCco- St-co-HEA) anion-exchange membrane for all-vanadium redox flow battery", Polymer (Korea), 35, 586 (2011).   DOI
14 T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003).   DOI
15 T. Yamaguchi, F. miyata, and S. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003).   DOI
16 H. S. Choi, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Research review of the all vanadium redox- flow battery for large scale power storage", Membr. J., 21, 107 (2011).
17 T. Yamaguchi, H Zhou, S. Nakazawa, and N. Hara, "An extremely low methanol crossover and highly durable aromatic pore filling electrolyte membrane for direct methanol fuel cells", Adv. Mater., 19, 592 (2007).   DOI
18 Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, and T. Mishima, "Water stability of sulfonated polyimide membranes", Macromol., 39, 1189 (2006).   DOI
19 S. Bhadra, N. H. Kim, and J. H. Lee, "A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., 349, 304 (2010).   DOI
20 C. Jia, J. Liu, and C. Yan, "A significantly improved membrane for vanadium redox flow battery", J. Power Sources, 195, 4380 (2010).   DOI
21 J. G. Kim, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Durability of cation exchange membrane containing Psf (polysulfone) in the all-vanadium redox battery", Membr. J., 21, 141 (2011).
22 M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, "A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries", RSC Adv., 6, 63023 (2016).   DOI
23 I. C. Na, H. S. Jo, C. H. Ryu, and G. J. Hwang, "Study on a separator for Zn-Br redox flow battery", Membr. J., 24, 286 (2014).