Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.21

Optimum Design of Pore-filled Anion-exchange Membranes for Efficient All-vanadium Redox Flow Batteries  

Kim, Yu-Jin (Department of Green Chemical Engineering, Sangmyung University)
Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.30, no.1, 2020 , pp. 21-29 More about this Journal
Abstract
In this study, we have established the optimum design condition of pore-filled anion-exchange membrane for all-vanadium redox flow battery (VRFB). From the experimental results, it was proven that the membrane design factors that have the greatest influence on the charge-discharge performance of VRFB are the ion exchange capacity, the porosity of substrate film, and the crosslinking degree. That is, the ohmic loss and the crossover of active materials in VRFB were shown to be determined by the above factors. In addition, two methods, i.e. reducing the ion exchange capacity at low crosslinking degree and increasing the crosslinking degree at high ion exchange capacity, were investigated in the preparation of pore-filled anion-exchange membranes. As a result, it was found that optimizing the crosslinking degree at sufficiently high ion exchange capacity is more desirable to achieving high VRFB charge-discharge performances.
Keywords
pore-filled anion-exchange membrane; all-vanadium redox flow battery; ion exchange capacity; porosity; crosslinking degree;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Prifti, A. Parasuraman, S. Windardi, T. M. Lim, and M. Skyllas-Kazacos, "Membranes for redox flow battery applications", Membranes, 2, 275 (2012).   DOI
2 Y. M. Baek, N. S. Kwak, T. S. Hwang, Y. Baek, N.-S. Kwak, and T. S. Hwang, "Synthesis and characterization of vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate (VBC-co-St-co-HEA) anion-exchange membrane for all-vanadium redox flow battery", Polymer Korea, 35, 586 (2011).   DOI
3 L. Li, S. Kim, G. Xia, and Z. G. Yang, "Advanced redox flow batteries for stationary electrical energy storage", J. Electrochem. Soc., 163, 1 (2012).
4 A. Cunha, J. Martins, N. Rodrigues, and F. P. Brito, "Vanadium redox flow batteries: A technology review", Int. J. Energy Res., 2015, 889 (2014).
5 C. H. Bae, E. P. L. Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002).   DOI
6 M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
7 P. K. Leung, C. Ponce de Leon, and F. C. Walsh, "The influence of operational parameters on the performance of an undivided zinc-cerium flow battery", Electrochem. Acta, 80, 7 (2012).   DOI
8 H. Vafiadis and M. Skyllas-Kazacos, "Evaluation of membranes for the novel vanadium bromine redox flow cell", J. Memb. Sci., 279, 394 (2006).   DOI
9 M. Kazacos, M. Cheng, and M. Skyllas-Kazacos, "Vanadium redox cell electrolyte optimization studies", J. Appl. Electrochem., 20, 463 (1990).   DOI
10 A. Z. Weber, M. M. Mench, J. P. Meyers, P. M. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: A review", J. Appl. Electrochem., 41, 1137 (2011).   DOI
11 D. Y. Ha, S. K. Kim, D. H. Jung, S. Y. Lim, D. H. Baek, B. R. Lee, and G. Y. Lee, "Effect of carbon felt oxidation methods on the electrode performance of vanadium redox flow battery", J. Korean Electrochem. Soc., 12, 263 (2009).   DOI
12 H. S. Choi, Y. H. Oh, C. H. Ryu, and G. J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Institute Chem. Eng., 45, 2920 (2014).   DOI
13 G. J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996).   DOI
14 D. H. Kim, S. J. Seo, M. J. Lee, J. S. Park, S. H. Moon, Y. S. Kang, Y. W. Choi, and M. S. Kang, "Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles", J. Membr. Sci., 454, 44 (2014).   DOI
15 D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimizing membrane thickness for vanadium redox flow batteries", J. Membr. Sci., 437, 108 (2013).   DOI
16 C. S. Jin, "Battery for large scale energy storage", KIC News, 13, 23 (2010).
17 M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 7, 219 (1989).   DOI
18 G. L. Soloveichik, "Flow batteries: Current status and trends", Chem. Rev., 115, 11533 (2015).   DOI
19 K. W. Sung, S. H. Shin, and S. H. Moon, "Characterization of commercial membranes for non-aqueous vanadium redox flow battery", Korean Chem. Eng. Res., 51, 615 (2013).   DOI
20 A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013).   DOI