Browse > Article
http://dx.doi.org/10.14478/ace.2018.1074

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)  

Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Kim, Tae Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
Kim, Hyoung Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.5, 2018 , pp. 489-496 More about this Journal
Abstract
Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.
Keywords
fuel cell; anion exchange membrane fuel cell; anion exchange membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Scribd. Inc., http://pt.scribd.com/doc/3323459/Effect-of-Climate-changein-agriculture-and-livestock-production, July 11 (2018).
2 Eastern Research Group, Inc., https://www.erg.com/project/digitaltransformation-epas-greenhouse-gas-emissions-report, July 11 (2018).
3 Korea Energy Agency, 2017 Vehicle Fuel Economy and $CO_2$ Emissions: Data and Analyses, pp. 53-58, Korea (2017).
4 Toyota Motor Sales, U.S.A. Inc., https://ssl.toyota.com/mirai/fcv.html, July 11 (2018).
5 Hydrogen Cars Now, http://www.hydrogencarsnow.com/index.php/kenworth-t680-fuel-cell-heavy-truck/, July 11 (2018).
6 Money Today, http://news.mt.co.kr/mtview.php?no=2017091216144652060, September 12 (2017).
7 C. H. Park, S. Y. Nam, and Y. T. Hong, Molecular dynamics (MD) study of proton exchange membranes for fuel cells, Membr. J., 26, 329-336 (2016).   DOI
8 D. J. Kim and S. Y. Nam, Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell, Membr. J., 22, 155-170 (2012).
9 E. Agel, J. Bouet, and J. F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources, 101, 267-274 (2001).   DOI
10 J. R. Varcoe and R. C. T. Slade, Prospects for alkaline anion exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005).   DOI
11 Q. He and E. J. Cairns, Review-recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells, J. Electrochem. Soc., 162, F1504-F1539 (2015).   DOI
12 B. C. Bae, E. Y. Kim, S. J. Lee, and H. J. Lee, Research trends of anion exchange membranes within alkaline fuel cells, New Renew. Energy, 11, 52-61 (2015).   DOI
13 H. H. Lee, Development trend of anion exchange membrane for alkaline fuel cell, KOSEN Expert Review, 1, 1 (2012).
14 H. Yanagi and K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS Trans., 16, 257-262 (2008).
15 H. J. Lee, J. H. Choi, B. J. Chang, and J. H. Kim, Research and development trends of ion exchange membranes processes, Korean Ind. Chem. (KIC) News, 14, 21-28 (2011).
16 S. D. Poynton and J. R. Varcoe, Reduction of the monomer quantities required for the preparation of radiation-grafted alkaline anion-exchange membranes, Solid State Ion., 277, 38-43 (2015).   DOI
17 W. H. Lee, E. J. Park, J. Y. Han, D. W. Shin, Y. S. Kim, and C. S. Bae, Poly(terphenylene) anion exchange membranes: The effect of backbone structure on morphology and membrane property, ACS Macro Lett., 6, 566-570 (2017).   DOI
18 S. Suzuki, H. Muroyama, T. Matsui, and K. Eguchi, Influence of $CO_2$ dissolution into anion exchange membrane on fuel cell performance, Electrochim. Acta, 88, 552-558 (2013).   DOI
19 N. Ziv, W. E. Mustain, and D. R. Dekel, The effect of ambient carbon dioxide on anion exchange membrane fuel cells, ChemSusChem, 11, 1136-1150 (2018).   DOI
20 B. S. Lee, S. K. Jung, and J. W. Rhim, Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications, Polymer(Korea), 35, 296-301 (2011).
21 H. Zhang, B. Shi, R. Ding, H. Chen, J. Wang, and J. Liu, Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property, Int. Eng. Chem. Res., 55, 9064-9076 (2016).   DOI
22 S. H. Kwon, A. H. N. Rao, and T. H. Kim, Anion exchange membranes based on terminally crosslinked methyl morpholiniumfunctionalized poly(arylene ether sulfones)s, J. Power Sources, 375, 421-432 (2018).   DOI
23 Y. Kim, K. Ketpang, S. Jaritphun, J. S. Park, and S. Shanmugam, A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity, J. Mater. Chem. A, 3, 8148-8155 (2015).   DOI
24 M. Watanabe, Y. Satoh, and C. Shimura, Management of the water content in polymer electrolyte membranes with porous fiber wicks, J. Electrochem. Soc., 140, 3190-3193 (1993)   DOI
25 K. H. Choi, D. J. Park, Y. W. Rho, Y. T. Kho, and T. H. Lee, Comparison and characteristics of the membranes for internal humidification of PEMFC, Proc. 16th KSIEC Meeting, October 24-25, Daejeon, Korea (1997).
26 R. Yadav and P. S. Fedkiw, Analysis of EIS technique and Nafion 117 conductivity as a function of temperature and relative humidity, J. Electrochem. Soc., 159, B340-B346 (2012).   DOI
27 M. S. Shin, Y. J. Byun, Y. W. Choi, M. S. Kang, and J. S. Park, On-site crosslinked quaternized poly(vinyl alcohol) as ionomer binder for solid alkaline fuel cells, Int. J. Hydrogen Energy, 39, 16556-16561 (2014).   DOI
28 J. H. Shin, J. Y. Sohn, Y. C. Nho, T. J. Kang, D. S. Kim, D. S. Im, B. H. Lee, and J. H. Kim, Current R&D status of fuel cell membranes by radiation in Korea, J. Radiat. Ind., 6, 289-297 (2012).
29 X. Gao, H. Yu, J. Jia, J. Hao, F. Xie, J. Chi, B. Qin, L. Fu, W. Song, and Z. Shao, High performance anion exchange ionomer for anion exchange membrane fuel cells, RSC Adv., 7, 19153-19161 (2017).   DOI
30 X. D. Liu, H. R. Gao, X. H. Chen, Y. Hu, S. P. Pei, H. Li, and Y. M. Zhang, Synthesis of perfluorinated ionomers and their anion exchange membranes, J. Membr. Sci., 515, 268-276 (2016).   DOI
31 S. Gu, R. Cai, T. Luo, Z. Chen, M. Sun, Y. Liu, G. He, and Y. Yan, A soluble and highly conductive ionomer for high performance hydroxide exchange membrane fuel cells, Angew. Chem., 121, 6621-6624 (2009).   DOI
32 Y. Zhao, H. Yu, D. Yang, J. Li, Z. Shao, and B. Yi, High-performance alkaline fuel cells using crosslinked composite anion exchange membrane, J. Power Source, 221, 247-251 (2013).   DOI
33 Y. Luo, J. Guo, C. Wang, and D. Chu, Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte, Electrochem. Commun., 16, 65-68 (2012).   DOI
34 J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang, and J. Lu, High-performance alkaline polymer electrolyte for fuel cell applications, Adv. Funct. Mater., 20, 312-319 (2010).   DOI
35 T. Zhang, P. Wang, H. Chen, and P. Pei, A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition, Appl. Energy, 223, 249-262 (2018).   DOI
36 E. H. Majlan, D. Rohendi, W. R. W. Daud, T. Husaini, and M. A. Haque, Electrode for proton exchange membrane fuel cells: A review, Renew. Sustain. Energy Rev., 89, 117-134 (2018).   DOI
37 C. H. Woo, Current patents and papers research trend of fuel cell membrane, Membr. J., 26, 407-420 (2016).   DOI
38 Z. Wojnarowska and M. Paluch, Recent progress on dielectric properties of protic ionic liquids, J. Phys. Condens. Matter., 27, 073202-07321 (2015).   DOI
39 M. S. Shin, D. H. Kim, M. S. Kang, and J. S. Park, Development of ionomer binder solutions using polymer grinding for solid alkaline fuel cells, J. Korean Electrochem. Soc., 19, 107-113 (2016).   DOI
40 L. Wang, E. Magliocca, E. L. Cunningham, W. E. Mustain, S. D. Poynton, R. Escudero-Cid, M. M. Nasef, J. Ponce-Gonzalez, R. Bance-Souahli, R. C. T. Slade, D. K. Whelligan, and J. R. Varcoe, An optimized synthesis of high performance radiation-grafted anion exchange membranes, Green Chem., 19, 831-843 (2017).   DOI
41 D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018).   DOI
42 P. Atkins, J. D. Paula, and J. Keeler, Atkins' Physical Chemistry, 702, Oxford University Press, Oxford, UK (2006).
43 J. Chen, C. Li, J. Wang, L. Li, and Z. Wei, A general strategy to enhance the alkaline stability of anion exchange membranes, J. Mater. Chem. A, 5, 6318-6327 (2017).   DOI
44 D. J. Kim, B. N. Lee, and S. Y. Nam, Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell, Int. J. Hydrogen Energy, 42, 23759-23767 (2017).   DOI
45 S. Yun, X. Ma, H. Liu, and J. Hao, Highly stable double crosslinked membrane based on poly(vinylbenzyl chloride) for anion exchange membrane fuel cell, Polym. Bull., 75, 5163-5177 (2018).   DOI
46 B. S. Ko, J. Y. Sohn, Y. C. Nho, and J. H. Shin, A study on the radiolytic synthesis of PVBC-grafted ETFE films and their quaternarization with diamines for the preparation of anion exchange membranes, J. Radiat. Ind., 5, 179-184 (2011).
47 Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci., 66, 141-175 (2018).   DOI
48 W. G. Jang, S. H. Ye, S. K. Kang, J. T. Kim, and H. S. Byun, Preparation and characterization of ion exchange membrane using sPEEK for fuel cell application, Membr. J., 21, 270-276 (2011).
49 D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and ion conducting properties of anion exchange membranes based on PBI copolymers for alkaline fuel cells, Membr. J., 20, 217-221 (2010).
50 S. Gottesfeld, D. R. Dekel, M. Page, C. S. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375, 170-184 (2018).   DOI
51 G. Gupta, K. Scott, and M. Mamlouk, Soluble polystyrene-bpoly(ethylene/butylene)-b-polystyrene based ionomer for anion exchange membrane fuel cells operating at $70^{\circ}C$, Fuel Cells, 2, 137-147 (2018).
52 Z. Sun, B. Lin, and F. Yan, Anion-exchange membranes for alkaline fuel cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018).   DOI
53 B. Bauer, H. Strathmann, and F. Effenberger, Anion-exchange membranes with improved alkaline stability, Desalination, 79, 125-144 (1990).   DOI
54 Y. Yan, B. Xu, J. Wang, and Y. Zhao, Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers, WO2017172824A1, March 28 (2016).
55 T. P. Pandey, H. N. Sarode, Y. Yang, Y. Yang, K. Vezzu, V. D. Noto, S. Seifert, D. M. Knauss, M. W. Liberatore, and A. M. Herring, A highly hydroxide comductive, chemically stable anion exchange membrane, poly(2,6 dimethyl 1,4 phenylene oxide)-b-poly(vinyl benzyl trimethyl ammonium), for electrochemical applications, J. Electrochem. Soc., 163, H513-H520 (2016).   DOI