DOI QR코드

DOI QR Code

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process

막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성

  • Koo, Jin-Sun (Department of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • 구진선 (충남대학교 바이오응용화학과) ;
  • 곽노석 (충남대학교 바이오응용화학과) ;
  • 황택성 (충남대학교 화학공학과)
  • Received : 2011.12.05
  • Accepted : 2012.04.14
  • Published : 2012.09.25

Abstract

A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

본 연구에서는 막축전식 탈염(membrane capacitive deionization, MCDI) 공정용 음이온교환막의 제조를 위하여 vinylbenzyl chloride-co-ethyl methacrylate-co-styrene(VBC-EMA-St) 공중합체를 합성하였으며, 아민화 반응과 열처리를 통하여 음이온교환막을 제조하였다. 구조확인을 위하여 FTIR 분석을 하였고, GPC와 TGA를 통하여 합성한 고분자의 분자량과 분자분포, 열안정성을 분석하였으며, 함수율 및 이온교환용량을 측정하였다. 또한 LCR meter로 전기저항을 측정하고, MCDI 공정에 적용하기 위하여 제조한 음이온교환막을 충방전 시험 측정하였다. 이온교환용량, 함수율, 전기저항, 분자량은 각각 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$, $3.4{\times}10^4$ g/mol이었으며, CDI 충방전 시험 결과 상용화막인 AMX보다 우수한 성능을 나타내었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. A. D. Khawaji, I. K. Kutubkhanah, and J.-M. Wie, Desalination, 221, 47 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  2. Y. M. Kim, S. J. Kim, Y. S. Kim, S. Lee, I. S. Kim, and J. H. Kim, Desalination, 238, 312 (2009). https://doi.org/10.1016/j.desal.2008.10.004
  3. K. S. Kim, S. H. Kim, and I. H Jung, J. Korean Ind. Eng. Chem., 12, 560 (2001).
  4. C. Charcosset, Desalinaion, 245, 214 (2009). https://doi.org/10.1016/j.desal.2008.06.020
  5. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  6. C. H. Cho, K. Y. Oh, S. K. Kim, J. G. Yeo, and P. Sharma, J. Membr. Sci., 371, 226 (2011). https://doi.org/10.1016/j.memsci.2011.01.049
  7. R. K. Nagarale, G. S. Gohil, and K. V. Shahi, Adv. Colloid Interface Sci., 119, 97 (2006). https://doi.org/10.1016/j.cis.2005.09.005
  8. V. E. Santarosa, F. Peretti, V. Caldart, J. Zoppasb, and M. Zeni, Desalination, 149, 389 (2002). https://doi.org/10.1016/S0011-9164(02)00848-2
  9. M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur, and S. S. Kulkarni, Desalination, 197, 225 (2006). https://doi.org/10.1016/j.desal.2006.01.019
  10. M. S. Kang, Y. J. Choi, I. J. Choi, T. H. Yoon, and S. H. Moon, J. Membr. Sci., 216, 39 (2003). https://doi.org/10.1016/S0376-7388(03)00045-0
  11. Y. J. Choi, M. S. Kang, and S. H. Moon, J. Appl. Polym. Sci., 88, 1488 (2003). https://doi.org/10.1002/app.11860
  12. V. Neburchilov, J. Martin, H. Wang, and J. Zhang, J. Power Sources, 169, 221 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.044
  13. S. Savari, S. Sachdeva, and A. Kumar, J. Membr. Sci., 310, 246 (2008). https://doi.org/10.1016/j.memsci.2007.10.049
  14. Y. J. Kim and J. H. Choi, Appl. Chem. Eng., 21, 87 (2010).
  15. P. M. Biesheuvel and A. van der Wal, J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  16. T. W. Xu and W. H. Yang, J. Membr. Sci., 203, 145 (2002). https://doi.org/10.1016/S0376-7388(01)00795-5
  17. A. J. B. Kemperman, Handbook on Bipolar Membrane Technology, Twente University Press, Enschede, p. 9 (2000).
  18. Y. Choi, H. S. Lee, and T. S. Hwang, Polymer(Korea), 33, 608 (2007).
  19. I. H. Cho, K. W. Baek, C. S. Lee, Y. C. Nho, S. K. Yoon, and T. S. Hwang, Polymer(Korea), 31, 239 (2007).
  20. B. Y. Jeong, S. H. Song, K. W. Baek, I. H. Cho, and T. S. Hwang, Polymer(Korea), 30, 486 (2006).
  21. D. J. Kim, B. J. Chang, J. H. Kim, S. B. Lee, and H. J. Joo, Memb. J., 16, 221 (2006).
  22. K. J. Choi, J. H. Choi, E. H. Hwang, Y. W. Rhee, and T. S. Hwang, Polymer(Korea), 31, 247 (2007).
  23. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon, J. Membr. Sci., 309, 156 (2008). https://doi.org/10.1016/j.memsci.2007.10.013
  24. M. J. Sumner, W. L. Harrion, R. M. Weyers, Y. S. Kim, J. E. McGrath, J. S. Riffle, A. Brink, and M. H. Brink, J. Membr. Sci., 239, 199 (2004). https://doi.org/10.1016/j.memsci.2004.03.031
  25. N.-S. Kwak, J. S. Koo, T. S. Hwang, and E. M. Choi, Desalination, 10.1016/j.desal.2011.09.046 (2012)
  26. H. K. Xu, J. Fang, M. L. Guo, X. H. Lu, X. L. Wei, and S. Tu, J. Membr. Sci., 354, 206 (2010). https://doi.org/10.1016/j.memsci.2010.02.028
  27. C. E. Tsai, C. W. Lin, and B. J. Hwang, J. Power Sources, 195, 2166 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.055
  28. C. K. Yeom and K. H. Lee, J. Membr. Sci., 109, 257 (1996). https://doi.org/10.1016/0376-7388(95)00196-4
  29. K. S. Shin, E. M. Choi, and T. S. Hwang, J. Appl. Polym. Sci., 119, 3180 (2011). https://doi.org/10.1002/app.32811

Cited by

  1. Ion-Exchange Materials for Membrane Capacitive Deionization vol.1, pp.2, 2021, https://doi.org/10.1021/acsestwater.0c00123