DOI QR코드

DOI QR Code

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis

알칼리 수전해를 위한 상용 음이온교환막의 고온 특성

  • JANG, SU-YOEN (Department of Green Energy Engineering, Graduate School, Hoseo University) ;
  • RYU, CHEOL-HWI (Department of Green Energy Engineering, Graduate School, Hoseo University) ;
  • HWANG, GAB-JIN (Department of Green Energy Engineering, Graduate School, Hoseo University)
  • 장수연 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2022.06.14
  • Accepted : 2022.07.12
  • Published : 2022.08.30

Abstract

In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 "중소기업기술혁신개발사업(S2840782)"으로 추진된 것으로 중소벤처기업부의 재정지원에 감사드립니다.

References

  1. KMD, "Special report for 1.5℃ of global warming: hand-book", Korea Meteorological Agency, Korea, 2020.
  2. International Energy Agency (IEA), "Net zero by 2050: a roadmap for the global energy", IEA, 2021. Retrieved from https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.
  3. G. J. Hwang, K. S. Kang, H. J. Han, and J. W. Kim, "Technology trend for water electrolysis hydrogen production by the patent analysis", Trans Korean Hydrogen New Energy Soc, Vol. 18, No. 1, 2007, pp. 95-108. Retrieved from http://manu.hydrogen.or.kr/archive/archiveViewContents.php.
  4. G. J. Hwang and H. S. Choi, "Hydrogen production systems through water electrolysis", Membr. J., Vol. 27, No. 6, 2017, pp. 477-486, doi: https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.477.
  5. J. W. Park, C. H. Ryu, and G. J. Hwang, "Study on commercially available anion exchange membrane for alkaline water eectrolysis", Membr. J., Vol. 31, No. 4, 2021, pp. 275-281, doi: https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.4.275.
  6. H. Wendt and H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem., Vol. 19, 1989, pp. 605-610, doi: https://doi.org/10.1007/BF01022121.
  7. V. M. Rosa, M. B. F. Santos, and E. P. da Silva, "New materials for water electrolysis diaphragms", Int. J. Hydrogen Energy, Vol. 20, No. 9, 1995, pp. 697-700, doi: https://doi.org/10.1016/0360-3199(94)00119-K.
  8. W. Hu, X. Cao, F. Wang, and Y. Zhang, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy, Vol. 22, No. 6, 1997, pp. 621-623, doi: https://doi.org/10.1016/S0360-3199(96)00191-7.
  9. H. S. Choi, C. H. Ryu, S. G. Lee, C. S. Byun, and G. J. Hwang, "Study on anion exchange membrane for the alkaline electrolycsis", Trans Korean Hydrogen New Energy Soc, Vol. 22, No. 2, 2011, pp. 184-190, doi: https://doi.org/10.7316/khnes.2011.22.2.184.
  10. I. Vincent, A. Kruger, and D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis", Int. J. Hydrogen Energy, Vol. 42, No. 16, 2017, pp. 10752-10761, doi: https://doi.org/10.1016/j.ijhydene.2017.03.069.
  11. I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: a review", Renew. Sustain. Energy Rev., Vol. 81, No. 2, 2018, pp. 1690-1704, doi: https://doi.org/10.1016/j.rser.2017.05.258.
  12. H. Ito, N. Kawaguchi, S. Someya, and T. Munakata, "Pressurized operation of anion exchange membrane water electrolysis", Electrochim. Acta, Vol. 297, 2019, pp. 188-196, doi: https://doi.org/10.1016/j.electacta.2018.11.077.
  13. A. Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, and S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", Int. J. Hydrogen Energy, Vol. 45, No. 53, 2020, pp. 28272-28284, doi: https://doi.org/10.1016/j.ijhydene.2020.07.202.
  14. P. Shirvanian, A. Loh, S. Sluijter, and X. Li, "Novel components in anion exchange membrane water electrolyzers (AEMWE's): status, challenges and future needs. A mini review", Electrochem. Com., Vol. 132, 2021, pp. 107140, doi: https://doi.org/10.1016/j.elecom.2021.107140.
  15. H. Li, N. Yu, F. Gellrich, A. K. Reumert, M. R. Kraglund, J. Dong, D. Aili, and J. Yang, "Diamine crosslinked anion exchange membranes based on poly(vinyl benzyl methyl-pyrrolidinium) for alkaline water electrolysis", J. Membr. Sci., Vol. 633, 2021, pp. 119418, doi: https://doi.org/10.1016/j.memsci.2021.119418.
  16. J. G. Kim, S. H. Lee, S. I. Choi, C. S. Jin, J. C. Kim, C. H. Ryu, and G. J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., Vol. 16, No. 5, 2010, pp. 756-762, doi: https://doi.org/10.1016/j.jiec.2010.07.007.
  17. G. J. Hwang, B. M. Gil, and C. H. Ryu, "Preparation of the electrode using NiFe2O4 powder for the alkaline water electrolysis", J. Ind. Eng. Chem., Vol. 48, 2017, pp. 242-248, doi: https://doi.org/10.1016/j.jiec.2017.01.011.
  18. G. J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., Vol. 132, No. 1, 1997, pp. 55-61, doi: https://doi.org/10.1016/S0376-7388(97)00040-9.