• Title/Summary/Keyword: and convex functions.

Search Result 323, Processing Time 0.021 seconds

NEW FRACTIONAL INTEGRAL INEQUALITIES OF TYPE OSTROWSKI THROUGH GENERALIZED CONVEX FUNCTION

  • HUSSAIN, SABIR;QAISAR, SHAHID
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.107-114
    • /
    • 2018
  • We establish some new ostrowski type inequalities for MT-convex function including first order derivative via Niemann-Trouvaille fractional integral. It is interesting to mention that our results provide new estimates on these types of integral inequalities for MT-convex functions.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

NEW INFORMATION INEQUALITIES ON ABSOLUTE VALUE OF THE FUNCTIONS AND ITS APPLICATION

  • CHHABRA, PRAPHULL
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.371-385
    • /
    • 2017
  • Jain and Saraswat (2012) introduced new generalized f-information divergence measure, by which we obtained many well known and new information divergences. In this work, we introduce new information inequalities in absolute form on this new generalized divergence by considering convex normalized functions. Further, we apply these inequalities for getting new relations among well known divergences, together with numerical verification. Application to the Mutual information is also presented. Asymptotic approximation in terms of Chi- square divergence is done as well.

RADII PROBLEMS OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH FIXED SECOND COEFFICIENTS

  • PORWAL, SAURABH;BULUT, SERAP
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.317-323
    • /
    • 2015
  • The purpose of the present paper is to study certain radii problems for the function $$f(z)=\[{\frac{z^{1-{\gamma}}}{{\gamma}+{\beta}}}\(z^{\gamma}[D^nF(z)]^{\beta}\)^{\prime}\]^{1/{\beta}}$$, where ${\beta}$ is a positive real number, ${\gamma}$ is a complex number such that ${\gamma}+{\beta}{\neq}0$ and the function F(z) varies various subclasses of analytic functions with fixed second coefficients. Relevant connections of the results presented herewith various well-known results are briefly indicated.

CONVOLUTION PROPERTIES FOR GENERALIZED PARTIAL SUMS

  • Silberman, Herb
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.601-607
    • /
    • 1996
  • For functions $f(z) = \sum_{n = 0}^{\infty}a_n z^n$ and $g(z) = \sum_{n = 0}^{\infty} b_n z^n$ analytic in the unit disk $\Delta = {z : $\mid$z$\mid$ < 1}$, the convolution $f * g$ is defined by $(f * g)(z) = \sum_{n = 0}^{\infty}a_n b_n z^n$. Let S denote the family of functions $f(z) = z + \cdots$ analytic and univalent in $\Delta$ and K, St, C the subfamilies that are respectively convex, starlike, and close-to-convex.

  • PDF

Univalent Holomorphic Functions with Negative and Fixed Finitely Many Coefficients in terms of Generalized Fractional Derivative

  • Ebadian, Ali;Aghalary, Rasoul;Najafzadeh, Shahram
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.499-507
    • /
    • 2010
  • A new class of univalent holomorphic functions with fixed finitely many coefficients based on Generalized fractional derivative are introduced. Also some important properties of this class such as coefficient bounds, convex combination, extreme points, Radii of starlikeness and convexity are investigated.

STEFFENSEN'S INEQUALITY ON TIME SCALES FOR CONVEX FUNCTIONS

  • Iddrisu, Mohammed Muniru
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.89-99
    • /
    • 2019
  • The Steffensen's Inequality was discovered in 1918 by Johan Frederic Steffensen (1873-1961). This inequality is very popular in the research environment and attracted the attention of many people working in similar area. Various extensions and generalisations have been provided concerning the inequality. This paper presents some further refinements of the Steffensen's Inequality on Time scales using methods of convexity, differentiability and monotonicity.

Univalent Functions Associated with the Symmetric Points and Cardioid-shaped Domain Involving (p,q)-calculus

  • Ahuja, Om;Bohra, Nisha;Cetinkaya, Asena;Kumar, Sushil
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.75-98
    • /
    • 2021
  • In this paper, we introduce new classes of post-quantum or (p, q)-starlike and convex functions with respect to symmetric points associated with a cardiod-shaped domain. We obtain (p, q)-Fekete-Szegö inequalities for functions in these classes. We also obtain estimates of initial (p, q)-logarithmic coefficients. In addition, we get q-Bieberbachde-Branges type inequalities for the special case of our classes when p = 1. Moreover, we also discuss some special cases of the obtained results.

FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS

  • Harris, Lwarence-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.175-192
    • /
    • 2004
  • This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan's unique-ness theorem.