
J. Appl. Math. & Informatics Vol. 35(2017), No. 3 - 4, pp.371 - 385
https://doi.org/10.14317/jami.2017.371

NEW INFORMATION INEQUALITIES ON ABSOLUTE VALUE

OF THE FUNCTIONS AND ITS APPLICATION

PRAPHULL CHHABRA

Abstract. Jain and Saraswat (2012) introduced new generalized f - infor-
mation divergence measure, by which we obtained many well known and

new information divergences.
In this work, we introduce new information inequalities in absolute form
on this new generalized divergence by considering convex normalized func-

tions. Further, we apply these inequalities for getting new relations among
well known divergences, together with numerical verification. Application
to the Mutual information is also presented. Asymptotic approximation in
terms of Chi- square divergence is done as well.
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1. Introduction

Divergence measures have been demonstrated very useful in a variety of dis-
ciplines such as economics and political science [30, 31], biology [23], analysis of
contingency tables [10], approximation of probability distributions [5, 18], signal
processing [16, 17], pattern recognition [1, 4, 15], color image segmentation [21],
3D image segmentation and word alignment [29], cost- sensitive classification for
medical diagnosis [25], magnetic resonance image analysis [32] etc.
Without essential loss of insight, we have restricted ourselves to discrete prob-
ability distributions, so let Γn = {P = (p1, p2, p3, ..., pn) : pi > 0,

∑n
i=1 pi = 1},

n ≥ 2 be the set of all complete finite discrete probability distributions. If we take
pi ≥ 0 for some i = 1, 2, 3..., n, then we have to suppose that 0f (0) = 0f

(
0
0

)
= 0.

Some generalized information divergence measures had been introduced, char-
acterized and applied in variety of fields. Such as: Csiszar’s f - divergence [6, 7],
Bregman’s f - divergence [2], Burbea- Rao’s f - divergence [3], Renyi’s like f -
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divergence [24]. Similarly, Jain and Saraswat [14] defined new generalized f -
divergence measure, which is given by

Sf (P,Q) =
n∑

i=1

qif

(
pi + qi
2qi

)
, (1)

where f : (0,∞) → R (set of real no.) is real, continuous, and convex function
and P = (p1, p2, ..., pn) , Q = (q1, q2, ..., qn) ∈ Γn, where pi and qi are probabili-
ties.
Many divergence measures can be obtained from these generalized f - measures
by suitably defining the function f . Specially Cf (P,Q) and Sf (P,Q) are widely
used due to its compact nature. Some resultant divergences by Sf (P,Q), are as
follows.
(a). If we take f (t) = − log t in (1), we obtain

Sf (P,Q) =

n∑
i=1

qi log

(
2qi

pi + qi

)
= F (Q,P ) . (2)

where F (Q,P ) is called adjoint of the Relative JS divergence F (P,Q) [27].

(b). If we take f (t) = (t−1)2

t in (1), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi)
2

pi + qi
=

1

2
∆ (P,Q) , (3)

where ∆ (P,Q) is called the Triangular discrimination [8].
(c). If we take f (t) = t log t in (1), we obtain

Sf (P,Q) =

n∑
i=1

pi + qi
2

log

(
pi + qi
2qi

)
= G (Q,P ) , (4)

where G (Q,P ) is called adjoint of the Relative AG divergence G (P,Q) [28].
(d). If we take f (t) = (t− 1) log t in (1), we obtain

Sf (P,Q) =
1

2

n∑
i=1

(pi − qi) log

(
pi + qi
2qi

)
=

1

2
JR (P,Q) , (5)

where JR (P,Q) is called the Relative J- divergence [9].
(e). If we take f (t) = (t− 1)2 in (1), we obtain

Sf (P,Q) =
1

4

n∑
i=1

(pi − qi)
2

qi
=

1

4
χ2 (P,Q) , (6)

where χ2 (P,Q) is called the Chi- square divergence or Pearson divergence mea-
sure [22].
(f). If we take f (t) = |t− 1| in (1), we obtain

Sf (P,Q) =
1

2

n∑
i=1

|pi − qi| =
1

2
V (P,Q) , (7)
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where V (P,Q) is called the Variational distance (l1 distance) [19].
(g). Particularly, by taking f (t) = (2t− 1) log (2t− 1) , t ∈

(
1
2 ,∞

)
in (1), we

obtain

Sf (P,Q) =
n∑

i=1

pi log
pi
qi

= K (P,Q) , (8)

where K (P,Q) is called the Relative entropy (Kullback- Leibler distance) [20].
Similarly, we can obtain many divergences by using linear convex functions.
Since these divergences are not worthful in practice, therefore we can skip them.
Now, for a differentiable function f :

(
1
2 ,∞

)
→ R, consider the associated

function g :
(
1
2 ,∞

)
→ R, which is given by

g (t) = (t− 1) f ′
(
t+ 1

2

)
. (9)

Put (9) in (1), we get

E∗
Sf

(P,Q) =
n∑

i=1

(
pi − qi

2

)
f ′

(
pi + 3qi

4qi

)
. (10)

2. New Information Inequalities

In this section, we introduce new information inequalities on absolute value
of the functions for Sf (P,Q). Such inequalities are for instance needed in order
to calculate the relative efficiency of two divergences.

Theorem 2.1. Let f1 and f2 be two real, convex and normalized differentiable
functions of (α, β) ⊂ (0,∞), where 0 < α ≤ 1 ≤ β < ∞, α ̸= β. If there exists
the real constants m,M such that m < M , then

m ≤ |f1 (t1)− f1 (t2)|
|f2 (t1)− f2 (t2)|

≤ M. (11)

By using Cauchy’s theorem equation (11) can be written as

m ≤ |f ′
1 (t)|

|f ′
2 (t)|

=

∣∣∣∣f ′
1 (t)

f ′
2 (t)

∣∣∣∣ ≤ M, (12)

for all t1, t2 ∈ (α, β) ⊂ (0,∞).
If P,Q ∈ Γn is such that 0 < α ≤ pi+qi

2qi
≤ β < ∞ ∀ i = 1, 2, 3..., n, then we have

the following inequalities

mS|f2| (P,Q) ≤ S|f1| (P,Q) ≤ MS|f2| (P,Q) , (13)

where Sf (P,Q) is given by (1).

Proof. Firstly, we can see that (12) is obtained from (11) by using Cauchy’s
theorem.
Now put t1 = pi+qi

2qi
and t2 = 1 in (12), multiply with qi and then sum over all

i = 1, 2, 3..., n, we get desire result (13). �
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3. Application of New Information Inequalities

In this section, we will obtain bounds of different divergences in terms of the
Variational distance by using new inequalities (13). For this, let f2 : (0,∞) → R
be a function defined as

f2 (t) = |t− 1| , f2 (1) = 0, f ′
2 (t) =

{
−1 if 0 < t < 1

1 if 1 < t < ∞
, f ′′

2 (t) = 0 ∀ t ∈ (0,∞)

but f (t) is not differentiable at t = 1 and

|f ′
2 (t)| = 1. (14)

Since f ′′
2 (t) ≥ 0 ∀ t > 0− [1] and f2 (1) = 0, so f2 (t) is convex and normalized

function respectively. Now put f2 (t) in (1), we get

S|f2| (P,Q) =
1

2

n∑
i=1

|pi − qi| =
1

2
V (P,Q) . (15)

Proposition 3.1. Let V (P,Q) and F (P,Q) be defined as in (7) and (2) re-
spectively. For P,Q ∈ Γn, we have

1

2β
V (P,Q) ≤ |F | (P,Q) ≤ 1

2α
V (P,Q) . (16)

Proof. Let us consider

f1 (t) = − log t, t ∈ (0,∞) , f1 (1) = 0, f ′
1 (t) = −1

t
and f ′′

1 (t) =
1

t2
.

Since f ′′
1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is convex and normalized

function respectively.
Now put f1 (t) in (1), we get

S|f1| (P,Q) =
n∑

i=1

qi

∣∣∣∣log( 2qi
pi + qi

)∣∣∣∣ = |F | (Q,P ) . (17)

Now, let g (t) =
∣∣∣ f ′

1(t)
f ′
2(t)

∣∣∣ = ∣∣− 1
t

∣∣ = 1
t , where |f ′

2 (t)| = 1 and g′ (t) = − 1
t2 < 0.

It is clear that g (t) is always decreasing in (0,∞), so

m = inf
t∈(α,β)

g (t) = g (β) = |f ′
1 (β)| =

1

β
. (18)

M = sup
t∈(α,β)

g (t) = g (α) = |f ′
1 (α)| =

1

α
. (19)

The result (16) is obtained by using (15), (17), (18), and (19) in (13), after
interchanging P and Q. �
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Proposition 3.2. Let V (P,Q) and ∆(P,Q) be defined as in (7) and (3) re-
spectively. For P,Q ∈ Γn, we have
(a). If 0 < α < 1, then

0 ≤ ∆(P,Q) ≤ 1

2

[
β2 − α2

α2β2
+

∣∣∣∣β2 + α2

α2β2
− 2

∣∣∣∣]V (P,Q) . (20)

(b). If α = 1, then

0 ≤ ∆(P,Q) ≤ β2 − 1

β2
V (P,Q) . (21)

Proof. Let us consider

f1 (t) =
(t− 1)

2

t
, t ∈ (0,∞) , f1 (1) = 0, f ′

1 (t) =
t2 − 1

t2
and f ′′

1 (t) =
2

t3
.

Since f ′′
1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is convex and normalized

function respectively.
Now put f1 (t) in (1), we get

S|f1| (P,Q) =
1

2

n∑
i=1

(pi − qi)
2

pi + qi
=

1

2
∆ (P,Q) . (22)

Now, let

g (t) =

∣∣∣∣f ′
1 (t)

f ′
2 (t)

∣∣∣∣ = ∣∣∣∣ t2 − 1

t2

∣∣∣∣ =
{
−
(

t2−1
t2

)
if 0 < t < 1

t2−1
t2 if 1 ≤ t < ∞

,

where |f ′
2 (t)| = 1 and g′ (t) =

{
− 2

t3 < 0 if 0 < t < 1
2
t3 > 0 if 1 ≤ t < ∞

.

It is clear that g′ (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g (t) is decreasing in
(0, 1) and increasing in (1,∞). So g (t) has a minimum value at t = 1, therefore

m = inf
t∈(0,∞)

g (t) = g (1) = |f ′
1 (1)| = 0. (23)

M = sup
t∈(α,β)

g (t)

=

{
max (|f ′

1 (α)| , |f ′
1 (β)|) =

|f ′
1(α)|+|f ′

1(β)|+||f ′
1(α)|−|f ′

1(β)||
2 if 0 < α < 1

|f ′
1 (β)| if α = 1

,

i.e.,

M =

 1
2

[
β2−α2

α2β2 +
∣∣∣β2+α2

α2β2 − 2
∣∣∣] if 0 < α < 1

β2−1
β2 if α = 1

. (24)

The results (20) and (21) are obtained by using (15), (22), (23), and (24) in
(13). �
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Proposition 3.3. Let V (P,Q) and G (P,Q) be defined as in (7) and (4) re-
spectively. For P,Q ∈ Γn, we have
(a). If 0 < α ≤ 1

e , then

0 ≤ |G| (P,Q) ≤ 1

2

[
log

√
β

α
+
∣∣∣log e√αβ

∣∣∣]V (P,Q) . (25)

(b). If 1
e < α ≤ 1, then

log eα

2
V (P,Q) ≤ |G| (P,Q) ≤ log eβ

2
V (P,Q) . (26)

Proof. Let us consider

f1 (t) = t log t, t ∈ (0,∞) , f1 (1) = 0, f ′
1 (t) = 1 + log t and f ′′

1 (t) =
1

t
.

Since f ′′
1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is convex and normalized

function respectively.
Now put f1 (t) in (1), we get

S|f1| (P,Q) =

n∑
i=1

(
pi + qi

2

) ∣∣∣∣log(pi + qi
2qi

)∣∣∣∣ = |G| (Q,P ) . (27)

Now, let

g (t) =

∣∣∣∣f ′
1 (t)

f ′
2 (t)

∣∣∣∣ = |1 + log t| =

{
− (1 + log t) if 0 < t ≤ 1

e

1 + log t if 1
e < t < ∞

,

where |f ′
2 (t)| = 1 and g′ (t) =

{
− 1

t < 0 if 0 < t ≤ 1
e

1
t > 0 if 1

e < t < ∞
.

It is clear that g′ (t) < 0 in
(
0, 1

e

)
and > 0 in

(
1
e ,∞

)
, i.e., g (t) is decreasing in(

0, 1
e

)
and increasing in

(
1
e ,∞

)
. So g (t) has a minimum value at t = 1

e , therefore

m = inf
t∈(α,β)

g (t) =

{∣∣f ′
1

(
1
e

)∣∣ = 0 if 0 < α ≤ 1
e

|f ′
1 (α)| = 1 + logα if 1

e < α ≤ 1
. (28)

M = sup
t∈(α,β)

g (t)

=

max (|f ′
1 (α)| , |f ′

1 (β)|) =
[
log

√
β
α +

∣∣log e√αβ
∣∣] if 0 < α ≤ 1

e

|f ′
1 (β)| = 1 + log β if 1

e < α ≤ 1
.

(29)

The results (25) and (26) are obtained by using (15), (27), (28), and (29) in (13),
after interchanging P and Q. �

Proposition 3.4. Let V (P,Q) and JR (P,Q) be defined as in (7) and (5) re-
spectively. For P,Q ∈ Γn, we have
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(a). If 0 < α < 1, then

0 ≤ |JR| (P,Q) ≤

[
log

√
β

α
+

β − α

2αβ
+

∣∣∣∣β + α

2αβ
− log e

√
αβ

∣∣∣∣
]
V (P,Q) . (30)

(b). If α = 1, then

0 ≤ |JR| (P,Q) ≤
(
log eβ − 1

β

)
V (P,Q) . (31)

Proof. Let us consider

f1 (t) = (t− 1) log t, t ∈ (0,∞) , f1 (1) = 0,

f ′
1 (t) =

t− 1

t
+ log t and f ′′

1 (t) =
t+ 1

t2
.

Since f ′′
1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is convex and normalized

function respectively.
Now put f1 (t) in (1), we get

S|f1| (P,Q) =
1

2

n∑
i=1

∣∣∣∣(pi − qi) log

(
pi + qi
2qi

)∣∣∣∣ = 1

2
|JR| (P,Q) . (32)

Now, let

g (t) =

∣∣∣∣f ′
1 (t)

f ′
2 (t)

∣∣∣∣ = ∣∣∣∣ t− 1

t
+ log t

∣∣∣∣ =
{
−
(
t−1
t + log t

)
if 0 < t < 1

t−1
t + log t if 1 ≤ t < ∞

,

where |f ′
2 (t)| = 1 and g′ (t) =

{
−
(
t+1
t2

)
< 0 if 0 < t < 1

t+1
t2 > 0 if 1 ≤ t < ∞

.

It is clear that g′ (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g (t) is decreasing in
(0, 1) and increasing in (1,∞). So g (t) has a minimum value at t = 1, therefore

m = inf
t∈(0,∞)

g (t) = g (1) = |f ′
1 (1)| = 0. (33)

M = sup
t∈(α,β)

g (t)

=

max (|f ′
1 (α)| , |f ′

1 (β)|) =
[
log

√
β
α
+ β−α

2αβ
+

∣∣∣β+α
2αβ

− log e
√
αβ

∣∣∣] if 0 < α < 1(
log eβ − 1

β

)
if α = 1

.

(34)

The results (30) and (31) are obtained by using (15), (32), (33), and (34) in
(13). �
Proposition 3.5. Let V (P,Q) and χ2 (P,Q) be defined as in (7) and (6) re-
spectively. For P,Q ∈ Γn, we have
(a). If 0 < α < 1, then

0 ≤ χ2 (P,Q) ≤ 2 [β − α+ |2− (α+ β)|]V (P,Q) . (35)
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(b). If α = 1, then

0 ≤ χ2 (P,Q) ≤ 4 (β − 1)V (P,Q) . (36)

Proof. Let us consider

f1 (t) = (t− 1)
2
, t ∈ (0,∞) , f1 (1) = 0, f ′

1 (t) = 2 (t− 1) and f ′′
1 (t) = 2.

Since f ′′
1 (t) > 0 ∀ t > 0 and f1 (1) = 0, so f1 (t) is convex and normalized

function respectively.
Now put f1 (t) in (1), we get

S|f1| (P,Q) =
1

4

n∑
i=1

(pi − qi)
2

qi
=

1

4
χ2 (P,Q) . (37)

Now, let

g (t) =

∣∣∣∣f ′
1 (t)

f ′
2 (t)

∣∣∣∣ = |2 (t− 1)| =

{
−2 (t− 1) if 0 < t < 1

2 (t− 1) if 1 ≤ t < ∞
,

where |f ′
2 (t)| = 1 and g′ (t) =

{
−2 < 0 if 0 < t < 1

2 > 0 if 1 ≤ t < ∞
.

It is clear that g′ (t) < 0 in (0, 1) and > 0 in (1,∞), i.e., g (t) is decreasing in
(0, 1) and increasing in (1,∞). So g (t) has a minimum value at t = 1, therefore

m = inf
t∈(0,∞)

g (t) = g (1) = |f ′
1 (1)| = 0. (38)

M = sup
t∈(α,β)

g (t)

=

{
max (|f ′

1 (α)| , |f ′
1 (β)|) = [β − α+ |2− (α+ β)|] if 0 < α < 1

2 (β − 1) if α = 1
.

(39)

The results (35) and (36) are obtained by using (15), (37), (38), and (39) in
(13). �

4. Numerical Verification

In this section, we give two examples for calculating the divergences
|F | (P,Q) ,∆(P,Q) , |JR| (P,Q), and V (P,Q) and then verify the inequalities
(16), (20), and (30), numerically.

Example 4.1. Let P be the binomial probability distribution with parameters
(n = 10, p = 0.5) and Q its approximated Poisson probability distribution with
parameter (λ = np = 5) for the random variable X, then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .000976 .00976 .043 .117 .205 .246 .205 .117 .043 .00976 .000976
qi ≈ .00673 .033 .084 .140 .175 .175 .146 .104 .065 .036 .018

pi+qi
2qi

≈ .573 .648 .757 .918 1.086 1.203 1.202 1.063 .831 .636 .527

Table 1. Evaluation of probability distributions for (n = 10, p = 0.5, q = 0.5)
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By using Table 1, we get the followings.

α (= .527) ≤ pi + qi
2qi

≤ β (= 1.203) . (40)

|F | (P,Q) =

11∑
i=1

pi

∣∣∣∣log( 2pi
pi + qi

)∣∣∣∣ ≈ .1495. (41)

∆ (P,Q) =
11∑
i=1

(pi − qi)
2

pi + qi
≈ .0917. (42)

|JR| (P,Q) =
11∑
i=1

∣∣∣∣(pi − qi) log

(
pi + qi
2qi

)∣∣∣∣ ≈ .0808. (43)

V (P,Q) =

11∑
i=1

|pi − qi| ≈ .3312. (44)

Put the approximated numerical values from (40) to (44) in (16), (20), and (30),
we obtain the followings respectively.

.1376 ≤ .1495 (|F | (P,Q)) ≤ .3142,

0 ≤ .0917 (∆ (P,Q)) ≤ .8613,

and

0 ≤ .0808 (|JR| (P,Q)) ≤ .51042.

Hence verified the inequalities (16), (20), and (30) for p = 0.5.

Example 4.2. Let P be the binomial probability distribution with parameters
(n = 10, p = 0.7) and Q its approximated Poisson probability distribution with
parameter (λ = np = 7) for the random variable X , then we have

xi 0 1 2 3 4 5 6 7 8 9 10
pi ≈ .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282
qi ≈ .000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709

pi+qi
2qi

≈ .503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698

Table 2. Evaluation of probability distributions for (n = 10, p = 0.7, q = 0.3)

By using Table 2, we get the followings.

α (= .503) ≤ pi + qi
2qi

≤ β (= 1.396) . (45)

|F | (P,Q) =
11∑
i=1

pi

∣∣∣∣log( 2pi
pi + qi

)∣∣∣∣ ≈ .21792. (46)

∆ (P,Q) =

11∑
i=1

(pi − qi)
2

pi + qi
≈ .1812. (47)
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|JR| (P,Q) =

11∑
i=1

∣∣∣∣(pi − qi) log

(
pi + qi
2qi

)∣∣∣∣ ≈ .1686. (48)

V (P,Q) =
11∑
i=1

|pi − qi| ≈ .4844. (49)

Put the approximated numerical values from (45) to (49) in (16), (20), and (30),
we obtain the followings respectively.

.1734 ≤ .2179 (|F | (P,Q)) ≤ .4815,

0 ≤ .1812 (∆ (P,Q)) ≤ 1.4301,

and

0 ≤ .1686 (|JR| (P,Q)) ≤ .8129.

Hence verified the inequalities (16), (20), and (30) for p = 0.7.

Remark 4.1. Similarly we can verify the inequalities for different values of p and
q and for different discrete probability distributions, like: Geometric, Negative
Binomial, Uniform etc.

5. Application to the Mutual Information

Mutual information [26] is a measure of amount of information that one ran-
dom variable contains about another or amount of information conveyed about
one random variable by another.
Let X and Y be two discrete random variables with a joint probability mass
function p (xi, yj) = pij with i = 1, 2, ...,m; j = 1, 2, ..., n and marginal prob-
ability mass functions p (xi) =

∑n
j=1 p (xi, yj) , i = 1, 2, ...,m and p (yj) =∑m

i=1 p (xi, yj) , j = 1, 2, ..., n, where xi ∈ X, yj ∈ Y , then Mutual information
I (X,Y ) is defined by

I (X,Y ) =
m∑
i=1

n∑
j=1

p (xi, yj) log
p (xi, yj)

p (xi) p (yj)
=

∑
(x,y)∈(X,Y )

p (x, y) log
p (x, y)

p (x) p (y)
.

By viewing K (P,Q) (Relative entropy (8)), we can say that the Mutual infor-
mation is nothing but a Relative entropy between joint distribution p (x, y) and
product of marginal distributions p (x) and p (y) after replacing p (x) and q (x)
by p (x, y) and p (x) p (y) respectively, in (8). So I (X,Y ) can also be written as

I (X,Y ) = K (p (x, y) , p (x) p (y)) =
∑

(x,y)∈(X,Y )

p (x, y) log
p (x, y)

p (x) p (y)
. (50)

Similarly, we can define the Mutual information in following manners as well.
In |F | (P,Q) manner:

I|F | (X,Y ) =
∑

(x,y)∈(X,Y )

p (x, y)

∣∣∣∣log 2p (x, y)

p (x, y) + p (x) p (y)

∣∣∣∣ , (51)
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In χ2 (P,Q) manner:

Iχ2 (X,Y ) =
∑

(x,y)∈(X,Y )

[p (x, y)− p (x) p (y)]
2

p (x) p (y)
, (52)

In JR (P,Q) manner:

IJR
(X,Y ) =

∑
(x,y)∈(X,Y )

(p (x, y)− p (x) p (y)) log
p (x, y) + p (x) p (y)

2p (x) p (y)
, (53)

In V (P,Q) manner:

IV (X,Y ) =
∑

(x,y)∈(X,Y )

|p (x, y)− p (x) p (y)| , (54)

and In |G| (P,Q) manner:

I|G| (X,Y ) =
∑

(x,y)∈(X,Y )

(
p (x, y) + p (x) p (y)

2

) ∣∣∣∣log p (x, y) + p (x) p (y)

2p (x) p (y)

∣∣∣∣ ,
(55)

where F (P,Q) , JR (P,Q) , χ2 (P,Q) , V (P,Q), and G (P,Q) are given by (2),
(5), (6), (7), and (4) respectively.
So (50) to (55) tell us that how far the joint distribution is from its independency
or

I (X,Y ) = 0 = I|F | (X,Y ) = Iχ2 (X,Y ) = IJR
(X,Y ) = IV (X,Y ) = I|G| (X,Y )

if distributions are independent to each other.
For applications of mutual information, the papers [11] and [12] due to Jain and
Chhabra are referred.
Now we introduce the following proposition to obtain results in mutual informa-
tion sense.

Proposition 5.1. For 1
2 < α ≤ p(x,y)+p(x)p(y)

2p(x)p(y) ≤ β < ∞ ∀ (x, y) ∈ (X,Y ), we

get the following new information inequalities in Mutual information sense

|I (X,Y )− IJR
(X,Y )| ≤ (β − α)

4 (2α− 1) (2β − 1)
Iχ2 (X,Y )

≤ (β − α)

2 (2α− 1) (2β − 1)
(β − α+ |2− (α+ β)|) IV (X,Y )

≤ β (β − α)

(2α− 1) (2β − 1)
(β − α+ |2− (α+ β)|) I|F | (X,Y ) (56)

and

|I (X,Y )− IJR
(X,Y )| ≤ 1

2
log

(
2β − 1

2α− 1

)
IV (X,Y )

≤ 1

1 + logα
log

(
2β − 1

2α− 1

)
I|G| (X,Y ) .

(57)
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Proof. Let us consider

f (t) = (2t− 1) log (2t− 1) , t ∈
(
1

2
,∞

)
, f (1) = 0, f ′ (t) = 2 [1 + log (2t− 1)]

and f ′′ (t) =
4

2t− 1
. (58)

Since f ′′ (t) > 0 ∀ t > 1
2 and f (1) = 0, so f (t) is convex and normalized function

respectively.
Now put f (t) in (1) and put f ′ (t) in (10) then replace pi, qi ∀i = 1, 2, ..., n by
p (x, y) , p (x) p (y) ∀ (x, y) ∈ (X,Y ), we get

Sf (P,Q) =
∑

(x,y)∈(X,Y )

p (x, y) log
p (x, y)

p (x) p (y)
= I (X,Y ) (59)

and

E∗
Sf

(P,Q)

=
∑

(x,y)∈(X,Y )

(p (x, y)− p (x) p (y)) log
p (x, y) + p (x) p (y)

2p (x) p (y)
= IJR (X,Y )

(60)

respectively, and

Aβ
α (f ′) =

∫ β

α

|f ′′ (t)| dt =
∫ β

α

∣∣∣∣ 4

2t− 1

∣∣∣∣ dt = 2 log

(
2β − 1

2α− 1

)
. (61)

Now, let g (t) = f ′′ (t) = 4
2t−1 , where f ′′ (t) is given by (58) and g′ (t) =

− 2

(t− 1
2 )

2 < 0.

It is clear that g (t) is always decreasing in
(
1
2 ,∞

)
, so

m = inf
t∈(α,β)

g (t) = g (β) =
4

2β − 1
. (62)

M = sup
t∈(α,β)

g (t) = g (α) =
4

2α− 1
. (63)

The results (56) and (57) are obtained by using (50) to (55), (59) to (63) together
with first inequality of (16) and second inequality of (35) in [11] and first inequal-
ity of (25) in [12] after replacing pi, qi by p (x, y) , p (x) p (y) respectively. �

6. Asymptotic Approximation on Sf (P,Q)

In this section, we introduce asymptotic approximation of the generalized f -
divergence measure (1) in terms of well known Chi- square divergence (6).

Theorem 6.1. If f : (0,∞) → R is twice differentiable, convex, and normalized
function, i.e., f ′′ (t) > 0 and f (1) = 0 respectively, then we have

Sf (P,Q) ≈ f ′′ (1)

8
χ2 (P,Q) . (64)
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Equivalently ∣∣∣∣Sf (P,Q)

χ2 (P,Q)
− f ′′ (1)

8

∣∣∣∣ < ϵ ,when |P −Q| < δ,

where ϵ, δ → 0, i.e., ϵ, δ are very small.

Proof. We know by Taylors series expansion of function f (t) at t = 1, that

f (t) = f (1) + (t− 1) f ′ (1) +
(t− 1)

2

2!
f ′′ (1) + (t− 1)

2
g (t) , (65)

where g (t) = (t−1)
3! f ′′′ (1) + (t−1)2

4! f ′′′′ (1) + ... and we can see that g (t) → 0 as
t → 1, f (1) = 0 because f (t) is normalized, therefore from (65) we get

f (t) ≈ (t− 1) f ′ (1) +
(t− 1)

2

2!
f ′′ (1) . (66)

Now Put t = pi+qi
2qi

in (66), multiply with qi and then sum over all i = 1, 2, 3..., n,

we get the desire result (64). �

7. Conclusion and discussion

In this work, we presented new information inequalities on absolute functions
for Sf (P,Q). Further, bounds of various well known divergences have been ob-
tained in terms of the Variational distance in an interval (α, β), 0 < α ≤ 1 ≤
β < ∞ with α ̸= β as an application of new inequalities. These bounds have
been verified numerically by taking two discrete distributions: Binomial and
Poisson. An approximation on Sf (P,Q) has been done, which relates Sf (P,Q)
to χ2 (P,Q) approximately. Lastly, a very important application to the Mutual
information has been discussed, which tells us how far the joint distribution is
from its independency.
We found in our previous article [13] that square root of some particular diver-
gences of Csiszar’s class is a metric space but not each because of violation of
triangle inequality, so we strongly believe that divergence measures can be ex-
tended to other significant problems of functional analysis and its applications,
such investigations are actually in progress because this is also an area worth
being investigated. Such types of divergences are also very useful to find the
utility of an event, i.e., an event is how much useful compare to other event.
We hope that this work will motivate the reader to consider the extensions of
divergence measures in information theory, other problems of functional analysis
and fuzzy mathematics.
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