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NEW FRACTIONAL INTEGRAL INEQUALITIES OF TYPE
OSTROWSKI THROUGH GENERALIZED CONVEX
FUNCTION
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ABSTRACT. We establish some new ostrowski type inequalities for MT-
convex function including first order derivative via Niemann-Trouvaille
fractional integral. It is interesting to mention that our results provide
new estimates on these types of integral inequalities for M T-convex func-
tions.
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1. Introduction and Preliminaries

The ostrowski inequality is very important and well-known in the literature.
This inequality is stated as: Suppose f : I C [0,00) — R be a differentiable
function on I° (interior of I), where a,b € I with a < b such that f’ € Lla,b].
If | f/ (x)] < M, then the following inequality holds:

b 2 2
f@) = = [ sy < | E= 02D

b—a “b—a 2 ’

for all x € [a,b]. The constant i is the best possible in the sense that it cannot
be replaced by a smaller one.

Recently, convex function plays a major role in the development of many well
known inequalities. So many authors have generalized the classical version of
famous inequalities such as Hermite-Hadamard inequality, Simpson’s inequality,
Ostrowski inequality etc. for different classes of convex functions. For more
details, readers are refereed to [1-10],[20-27].

First we recall some definitions and preliminary facts of convex function and
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fractional calculus theory which will be used in the sequel.
A function f: I — R( ¢ # I C R) is said to be convex on the interval I of real
numbers, if

FAz+ L =Ny) <Af(@)+ 1 =X)f(y),
where a,b € I and X € [0,1],
Definition 1.1. A function f : I C R — R is said to be in the class of MT (I),
if it is nonnegative and satisfies the inequality:
VA VI=X\
=/ (a) +
2v1 -2 2v/X

FOa+(1—-A)b)dr< £ (b),

for all z,y € I and X € [0,1].

Remark 1.1. In above inequality, if we take A = 1/2, the inequality reduces to
Jensen convex.

Theorem 1.2. Let f € MT (I), where a,b € I with a < b and f € L [a,b],
then the following holds:

b
b 1
(50 <52, [ 1@

b
2 £(a)+£0)
o [r@ @< HOTIE

a

and

where T (z) = 7W, z € [a,b].

Fraction calculus [11, 12, 13, 14, 15, 16, 17, 18, 19] was introduced at the
end of the nineteenth century by Niemann and Trouvaille, the subject of which
has become a rapidly growing area and has found applications in diverse fields
ranging from physical sciences, biological sciences, economics and engineering.

Definition 1.3. Let f € L [a,b]. The Niemann-Trouvaille fractional integrals
J& f and Ji f of order oo > 0 with o > 0 are defined by

J;ﬁf(x):F(la)/m(x—t)o‘_lf(t)dt, (a <),
and
b
A @ =g [ €= @ b5 ).

respectively. Here I' (o) = [ e “u®"*du and JO, f (z) = JP_f(z) = f (z).
0

In case of @ = 1, the fractional integral reduces to the classical integral.
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Lemma 1.4. If f : [a,b] = R be a differentiable mapping on (a,b) with a < b
and f’ € Ly [a,b], then we have

%f () — Qb [Jon f (0) + T2 £ (a)]

o 1
<‘“7fk°‘f’ (A + (1= A)a) dr — L5222 [0 f O + (1 A) b)),
0

for all x € [a,b] with a > 0,

2. Main results

We are in position to derive our main results.

Theorem 2.1. Let f : [a,b] — R be a differentiable mapping such that f' €
Ly [a,b] . If |f'| is MT-convex on [a,b] and |f' (x)| < M, then we have

(et e W (0) — T8 T2, S () + T2 f ()|
r—a a+1 r— a+1
<29 (ot 3.) (M),

for all x € [a,b] and o > 0. Where
B(zy) = [y AL (1= NN, >0, y>0

represents the beta function.

Proof. Using Lemma 1.4, Holder’s inequality, and MT —convexity of | f/| , we get

T (0~ 5 a0+ I (@) |

1
= (Hifk‘*f’ Az + (1= X)a)dr — “big’vf’ (Az + (1 — \)b)d\

g(g”“if/\ﬂf’ Az +(1-)) )|d)\+uf/\°‘|f' (Az + (1= A) b)| dA
0
Ml o /
< g‘A {2ﬁ|f<>| X1 ()] ax

Ly m s 11 (@ <b>|] dA

< (- ai‘: ( (a+3,3) 1 ( )|+5(a+272)|f/(>|)
@b (5 (o +%% If' (@) + B (a+5,3) 1 (b))

<28(a+3,3) ( (G Dl b)**]

This completes the proof. O
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Corollary 2.2. Let f : [a,b] = R be a differentiable mapping such that f' €
Ly [a,b] . If |f'] is MT—convex on [a,b] and |f' (x)] < M, then we have

)

s x—a2 —£C2
1 /f(u)du<M[( )+ (b — )*]

- b—a

for all x € [a,b].

+

Remark 2.1. (1). If we choose x = 3

inequality
a+b
()~

(2). If we choose = a in Corollary 2.2, then we have

, in Corollary 2.2, then we have midpoint

u)du| <M (b—a).

b
/f(u)du <aM((b—a).

b—a

(3). If we choose z = b in Corollary 2.2, then we have

b
/f(u)du <7M((b—a).

b—a

Theorem 2.3. Let f : [a,b] — R be a differentiable mapping such that f' €
Ly [a,b] . If | f'|? is MT—convex on [a,b], p,q > 1 and |f' (z)] < M, then we
have the following inequality for fractional integral:

a0 f () — FeB) 2, f (6) + I3 1 (0]

ﬂ_l 1/p Iaa+1+bwa+1
< M(Z)q [paqul} [( ) bft(l : }’

forallxe[a,b],a>0and%—i—%:l.

Proof. Using Lemma 1.4, Holder’s inequality, and MT —convexity of |f|?, we
get

(m a0 f (2) — Gt [Jo f (0) + T2 f (a )]’

« 1
(S TAS (a4 (1= A)a) dA+ 25200 f/\“f’ (A + (1= A) b) dA
0

IN

oz (] Am); (J1r 0w+ a-nara) )
Lo (fw)p (0f1|f’(m+ (1 —)\)b)|’1d>\>q



New fractional integral inequalities of type Ostrowski through generalized convex function 111
)a+1

< 5 (IW);(Ofl(Q%M'()W 1 @1) );
S <f W)p @ (525 1 @)1+ L2 11 o)) dA)q
< () [l [

pa+1 b—a
This completes the proof . O

Corollary 2.4. Let f : [a,b] — R be a differentiable mapping such that f' €
Ly [a,b] . If | f'|? is MT—convex on [a,b], p,q > 1 and |f' (x)] < M, then we
have the following inequality for fractional integral:

b 1/p 1 a2 e
f(w)bia/f(mdugM[pil]/(Dq(M[(x b)_z(b ”>,

for all z € [a, b] and%—i—%: 1.

Remark 2.2. (1). If we choose z = “T'H’ in Corollary 2.4, then we have midpoint

inequality
Mpb—a)[ 1 Y7 ( m ) i
2 p+1 4/

2+

(2). If we choose z = a in Corollary 2.4, then we have

) b 1 1Yp N
_b_aa/f(u)du <M(b-a) [pﬂ] (1)

(3). If we choose z = b in Corollary 2.4, then we have

) b 1 1/p T\ L
_b_aa/f(u)du <M(b-a) [pﬂ] (1)

Theorem 2.5. Let f : [a,b] — R be a differentiable mapping such that f' €
Ly [a,b] . If | f'|? is MT—convex on [a,b], p,q > 1 and |f' (x)] < M, then we
have the following inequality for fractional integral:

rz—a)*+(b—x)¢ « a o

(el o) f () — ) 2, f (8) + T £ (0)]]

- 1 1/p z—a)* Tl (b—g)>t1
<M (Z)q |:poz1+1} |:( ) b—z(z : ] :

forallxe[a,b],a>0and%—k%:l.
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Proof. Using Lemma 1.4, Power mean inequality and MT—convexity of |f’|%,
we get

Wﬂx) ek [Je £ (b )+Jg:f(a)]‘

o 1
(z—a)* ™ anf'( H (1= N a)dr+ @D [y ()\x+(1—)\)b)d>\‘
0

b—a
(szti):Jrl (f )\ad)\)
0
1 -3
+et ( i X’d)\)
0
-
z—a)*t! 67 ! [e% —
< el (f/\ dA) (OfA (525 17 @I+ L33 1f (@))7) d)\)

-5 /1 7
z—b)*T? « « ! —
et QA d>\> (OfA (2\/\%|f (z)]7 4 L2 (b)|q) d)\)

(1) (o 1)) [

This completes the proof . (Il

1—

Q=

IN

(gl‘m|f'(Ag;+(1—A)a)|%zA>é

Q=

(Ojl" A Az + (1= X)b))? dA)

Q=

-

Corollary 2.6. Let f : [a,b] — R be a differentiable mapping such that f' €
Ly [a,b] . If |f'|* is MT—convez on [a,b], p,q > 1 and |f' (z)| < M, then we

have:
b 1-1 2 2
1 1 a [(z — a)? + (b — 2)?]
— <me(=
r -t [rwad<ar(3) @ ( s ,
for all x € [a, b] and%—&-%: 1.
Remark 2.3. (1). If we choose z = %+ in Corollary 2.6, then we have midpoint
inequality
1—1
1 a 1 (b—a
<MI( = a .
wsr(s) @ ()

(3

(2). If we choose x = a in Corollary 2.6, then we have

_ bia/bf(U)du < M9 (b—a) <;>1‘§(W);.

(3). If we choose x = b in Corollary 2.6, then we have

_ bia/bf(u)du < M(b—a) (;)13(@;'

Q=
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