• 제목/요약/키워드: amplifiers

검색결과 731건 처리시간 0.025초

PMD Tolerance of 10 Gbps Modulated Signals due to SOA-Induced Chirp in SOA Booster Amplifiers

  • Jang, Ho-Deok;Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.232-239
    • /
    • 2008
  • We investigated how the polarization-mode dispersion (PMD) tolerance was degraded by semiconductor optical amplifier (SOA)-induced chirp for the 10 Gb/s nonreturn-to-zero (NRZ), duobinary NRZ, return-to-zero (RZ), and carrier-suppressed RZ (CS-RZ) modulation formats. The power penalty was calculated as a measure of the system performance due to PMD for a given SOA-induced chirp. Considering only first-order PMD, all modulation formats have a similar PMD tolerance regardless of SOA-induced chirp. On the other hand, when both first- and second-order PMD are considered, the PMD tolerance of all modulation formats with the exception of the CS-RZ modulation format are degraded by SOA-induced chirp. Among all modulation formats considered here, the NRZ modulation format has the PMD tolerance with the highest sensitivity to SOA-induced chirp. When the peak-to-peak chirp induced by SOAs is $0.28{\AA}$, its PMD tolerance is degraded up to 4 dB for a differential group delay (DGD) of 50 ps. However, the PMD tolerance of the CS-RZ modulation format is largely unaffected by SOA-induced chirp.

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

TMS320F28377D 기반 아날로그-디지털 신호 처리 시스템 (Analog-Digital Signal Processing System Based on TMS320F28377D)

  • 김형우;남기곤;최준영
    • 대한임베디드공학회논문지
    • /
    • 제14권1호
    • /
    • pp.33-41
    • /
    • 2019
  • We propose an embedded solution to design a high-speed and high-accuracy 16bit analog-digital signal processing interface for the control systems using various external analog signals. Choosing TMS320F28377D micro controller unit (MCU) featuring high-performance processing in the 32-bit floating point operation, low power consumption, and various I/O device supports, we design and build the proposed system that supports both 16-bit analog-digital converter (ADC) interface and high precision digital-analog converter (DAC) interface. The ADC receives voltage-level differential signals from fully differential amplifiers, and the DAC communicates with MCU through 50 MHz bandwidth high-fast serial peripheral interface (SPI). We port the boot loader and device drivers to the implemented board, and construct the firmware development environment for the application programming. The performance of the entire implemented system is demonstrated by analog-digital signal processing tests, and is verified by comparing the test results with those of existing similar systems.

CMOS true-time delay IC for wideband phased-array antenna

  • Kim, Jinhyun;Park, Jeongsoo;Kim, Jeong-Geun
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.693-698
    • /
    • 2018
  • This paper presents a true-time delay (TTD) using a commercial $0.13-{\mu}m$ CMOS process for wideband phased-array antennas without the beam squint. The proposed TTD consists of four wideband distributed gain amplifiers (WDGAs), a 7-bit TTD circuit, and a 6-bit digital step attenuator (DSA) circuit. The T-type attenuator with a low-pass filter and the WDGAs are implemented for a low insertion loss error between the reference and time-delay states, and has a flat gain performance. The overall gain and return losses are >7 dB and >10 dB, respectively, at 2 GHz-18 GHz. The maximum time delay of 198 ps with a 1.56-ps step and the maximum attenuation of 31.5 dB with a 0.5-dB step are achieved at 2 GHz-18 GHz. The RMS time-delay and amplitude errors are <3 ps and <1 dB, respectively, at 2 GHz-18 GHz. An output P1 dB of <-0.5 dBm is achieved at 2 GHz-18 GHz. The chip size is $3.3{\times}1.6mm^2$, including pads, and the DC power consumption is 370 mW for a 3.3-V supply voltage.

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo;Roh, Jeongjin
    • Journal of Semiconductor Engineering
    • /
    • 제2권1호
    • /
    • pp.109-118
    • /
    • 2021
  • This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.

An optimization technique for simultaneous reduction of PAPR and out-of-band power in NC-OFDM-based cognitive radio systems

  • Kaliki, Sravan Kumar;Golla, Shiva Prasad;Kurukundu, Rama Naidu
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.7-16
    • /
    • 2021
  • Noncontiguous orthogonal frequency division multiplexing (NC-OFDM)-based cognitive radio (CR) systems achieve highly efficient spectrum utilization by transmitting unlicensed users' data on subcarriers of licensed users' data when they are free. However, there are two disadvantages to the NC-OFDM system: out-of-band power (OBP) and a high peak-to-average power ratio (PAPR). OBP arises due to side lobes of an NC-OFDM signal in the frequency domain, and it interferes with the spectrum for unlicensed users. A high PAPR occurs due to the inverse fast Fourier transform (IFFT) block used in an NC-OFDM system, and it induces nonlinear effects in power amplifiers. In this study, we propose an algorithm called "Alternative Projections onto Convex and Non-Convex Sets" that reduces the OBP and PAPR simultaneously. The alternate projections are performed onto these sets to form an iteration, and it converges to the specified limits of in-band-power, peak amplitude, and OBP. Furthermore, simulations show that the bit error rate performance is not degraded while reducing OBP and PAPR.

A review on a 4 K cryogenic refrigeration system for quantum computing

  • Park, Jiho;Kim, Bokeum;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This paper reviews the literature that has been published since 1980s related to cryogenic refrigeration systems for quantum computing. The reason why such a temperature level of 10-20 mK is necessary for quantum computing is that the superconducting qubit is sensitive to even very small thermal disturbances. The entanglement of the qubits may not be sustained due to thermal fluctuations and mechanical vibrations beyond their thresholds. This phenomenon is referred to as decoherence, and it causes an computation error in operation. For the stable operation of the quantum computer, a low-vibration cryogenic refrigeration system is imperative as an enabling technology. Conventional dilution refrigerators (DR), so called 'wet' DR, are precooled by liquid helium, but a more convenient and economical precooling method can be achieved by using a mechanical refrigerator instead of liquid cryogen. These 'dry' DRs typically equip pulse-tube refrigerators (PTR) for precooling the DRs around 4 K because of its particular advantage of low vibration characteristic. In this review paper, we have focused on the development status of 4 K PTRs and further potential development issues will be also discussed. A quiet 4 K refrigerator not only serves as an indispensable precooler of DR but also immediately enhances the characteristics of low noise amplifiers (LNA) or other cryo-electronics of various type quantum computers.

Ka대역 100 W급 SSPA 개발 (SSPA Development of 100W Class in Ka-band)

  • 서미희;정해창;나경일;김소수
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.129-135
    • /
    • 2022
  • 본 논문에서는 10 W급 전력증폭 GaN MMIC(Microwave Monolithic Integrated Circuit)를 16개 전력 결합하여 100 W급 Ka대역 SSPA(Soild State Power Amplifier)를 개발하였다. 개발된 SSPA를 하나의 안테나를 이용하여 송수신을 하는 Ka 대역 소형 레이다에 적용을 위해 수신 구간에 MMIC 게이트 전원을 제어하여 SSPA 잡음이 수신기에 미치는 영향을 최소화 하였다. 또한 근접한 표적의 큰 수신신호에 의해 수신기가 포화되는 것을 막기 위해 SSPA의 출력 전력을 약 20 dB 감소시키는 기능을 추가하였다. 개발된 SSPA는 10%, 40% 듀티비의 펄스 조건에서 각각 52.4 dBm, 51.6 dBm 이상의 첨두전력을 출력하였으며, 이때 전력효율은 각각 19.2%, 15.8% 이상이다.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.