DOI QR코드

DOI QR Code

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo (Department of Electrical Engineering, Hanyang University) ;
  • Roh, Jeongjin (Department of Electrical Engineering, Hanyang University)
  • Received : 2020.12.01
  • Accepted : 2021.01.18
  • Published : 2021.03.31

Abstract

This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.

Keywords

References

  1. G. Chen, S. Hanson, D. Blaauw and D. Sylvester, "Circuit Design Advances for Wireless Sensing Applications," in Proceedings of the IEEE, vol. 98, no. 11, pp. 1808-1827, Nov. 2010. https://doi.org/10.1109/JPROC.2010.2053333
  2. Y. Tachwali, H. Refai and J. E. Fagan, "Minimizing HVAC Energy Consumption Using a Wireless Sensor Network," IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, pp. 439-444, Nov. 2007.
  3. S. Drago, D. M. W. Leenaerts, B. Nauta, F. Sebastiano, K. A. A. Makinwa and L. J. Breems. "A 200 ㎂ Duty-Cycled PLL for Wireless Sensor Nodes in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1305-1315, Jul. 2010. https://doi.org/10.1109/JSSC.2010.2049458
  4. T. C. Carusone, D. A. Johns and K. W. Martin, Analog Integrated Circuit Design, 2nd Edition, WILEY, 2012
  5. S. Pavan, R. Schreier, G. C. Temes, Understanding Delta-Sigma Data Converters. 2nd ed. New York, NY: Wiley; 2017.
  6. M. Jang, C. Lee and Y. Chae, "Analysis and Design of Low-Power Continuous-Time Delta-Sigma Modulator Using Negative-R Assisted Integrator," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 277-287, Jan. 2019. https://doi.org/10.1109/JSSC.2018.2871111
  7. A. Sukumaran and S. Pavan, "Low Power Design Techniques for Single-Bit Audio Continuous-Time Delta Sigma ADCs Using FIR Feedback," in IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2515-2525, Nov. 2014. https://doi.org/10.1109/JSSC.2014.2332885
  8. S. Pavan and P. Sankar, "Power Reduction in Continuous-Time Delta-Sigma Modulators Using the Assisted Opamp Technique," in IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1365-1379, Jul. 2010. https://doi.org/10.1109/JSSC.2010.2048082
  9. F. Chen and B. Leung, "A 0.25-mW Low-Pass Passive Sigma-Delta Modulator with Built-in Mixer for a 10-MHz IF Input," in IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp. 774-782, Jun. 1997. https://doi.org/10.1109/4.585244
  10. R. Yousry, E. Hegazi and H. F. Ragai, "A Third-Order 9-Bit 10-MHz CMOS Delta-Sigma Modulator with One Active Stage," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 9, pp. 2469-2482, Oct. 2008. https://doi.org/10.1109/TCSI.2008.920065
  11. A. F. Yeknami, F. Qazi and A. Alvandpour, "Low-Power DT Delta-Sigma Modulators Using SC Passive Filters in 65 nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 2, pp. 358-370, Feb. 2014. https://doi.org/10.1109/TCSI.2013.2278346
  12. Y. Yoon, Q. Duan, J. Yeo, J. Roh, J. Kim and D. Kim, "A Delta-Sigma Modulator for Low-Power Analog Front Ends in Biomedical Instrumentation," in IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 7, pp. 1530-1539, Jul. 2016. https://doi.org/10.1109/TIM.2016.2534358
  13. M. Kareppagoudr, J. Shakya, E. Caceres, Y. -W. Kuo and G. C. Temes, "Slewing Mitigation Technique for Switched Capacitor Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3251-3261, Oct. 2020. https://doi.org/10.1109/tcsi.2020.2979836
  14. M. P. Garde, A. Lopez-Martin, R. G. Carvajal and J. Ramirez-Angulo, "Super Class-AB Recycling Folded Cascode OTA," in IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2614-2623, Sept. 2018. https://doi.org/10.1109/jssc.2018.2844371
  15. Y. Jing and B. Bakkaloglu, "A High Slew-Rate Adaptive Biasing Hybrid Envelope Tracking Supply Modulator for LTE Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 9, pp. 3245-3256, Sept. 2017. https://doi.org/10.1109/TMTT.2017.2678476
  16. H. He, T. Ge, Y. Kang, L. Guo and J. S. Chang, "A 40 MHz Bandwidth, 91% Peak Efficiency, 2.5 W Output Power Supply Modulator with Dual-Mode Sigma-Delta Control and Adaptive Biasing Amplifier for Multistandard Communications," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9430-9442, Sept. 2020. https://doi.org/10.1109/TPEL.2020.2969358
  17. S. Ma, L. Liu, T. Fang, J. Liu and N. Wu, "A Discrete-Time Audio Delta-Sigma Modulator Using Dynamic Amplifier with Speed Enhancement and Flicker Noise Reduction Techniques," in IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 333-343, Feb. 2020. https://doi.org/10.1109/jssc.2019.2941540
  18. J. Kim, S. Song and J. Roh, "A High Slew-Rate Enhancement Class-AB Operational Transconductance Amplifier (OTA) for Switched-Capacitor (SC) Application," in IEEE Access, 2020.
  19. A. Hussain, S. Sin, C. Chan, S. Ben U, F. Maloberti and R. P. Martins, "Active-Passive Delta-Sigma Modulator for HighResolution and Low-Power Applications," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 364-374, Jan. 2017. https://doi.org/10.1109/TVLSI.2016.2580712
  20. F. Michel and M. S. J. Steyaert, "A 250 mV 7.5 ㎼ 61 dB SNDR SC ΔΣ Modulator Using Near-Threshold-Voltage-Biased Inverter Amplifiers in 130 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 709-721, Mar. 2012. https://doi.org/10.1109/JSSC.2011.2179732
  21. Z. Yang, L. Yao and Y. Lian, "A 0.5-V 35-㎼ 85-dB DR Double-Sampled Delta-Sigma Modulator for Audio Applications," in IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 722-735, Mar. 2012. https://doi.org/10.1109/JSSC.2011.2181677
  22. G. Ahn, "A 0.6-V 82-dB Delta-Sigma Audio ADC Using Switched-RC Integrators," in IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2398-2407, Dec. 2005. https://doi.org/10.1109/JSSC.2005.856286
  23. Y. Yoon, H. Roh and J. Roh, "A True 0.4-V Delta-Sigma Modulator Using a Mixed DDA Integrator Without Clock Boosted Switches," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 4, pp. 229-233, Apr. 2014. https://doi.org/10.1109/TCSII.2014.2305214
  24. Y. Yoon, D. Choi and J. Roh, "A 0.4 V 63 ㎼ 76.1 dB SNDR 20 kHz Bandwidth Delta-Sigma Modulator Using a Hybrid Switching Integrator," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2342-2352, Oct. 2015. https://doi.org/10.1109/JSSC.2015.2468857
  25. R. Wei, W. Wang, X. Xiao and Q. Chen, "A Low-Power Delta-Sigma Capacitance-to-Digital Converter for Capacitive Sensors," in IEEE Access, vol. 7, pp. 78281-78288, Jun. 2019. https://doi.org/10.1109/access.2019.2922840
  26. C. Ho, C. Liu, C. Lo, H. Tsai, T. Wang and Y. Lin, "A 4.5 mW CT Self-Coupled Delta-Sigma Modulator with 2.2 MHz BW and 90.4 dB SNDR Using Residual ELD Compensation," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2870-2879, Dec. 2015. https://doi.org/10.1109/JSSC.2015.2475160
  27. J. Zhang, Y. Lian, L. Yao and B. Shi, "A 0.6-V 82-dB 28.6-㎼ Continuous-Time Audio Delta-Sigma Modulator," in IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2326-2335, Oct. 2011. https://doi.org/10.1109/JSSC.2011.2161212
  28. J. L. A. de Melo, N. Paulino and J. Goes, "Continuous-Time Delta-Sigma Modulators Based on Passive RC Integrators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3662-3674, Nov. 2018. https://doi.org/10.1109/tcsi.2018.2855649
  29. S. Pavan, N. Krishnapura, R. Pandarinathan and P. Sankar, "A Power Optimized Continuous-Time Delta-Sigma ADC for Audio Applications," in IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 351-360, Feb. 2008. https://doi.org/10.1109/JSSC.2007.914263
  30. S. Loeda, J. Harrison, F. Pourchet and A. Adams, "A 10/20/30/40 MHz Feedforward FIR DAC Continuous-Time Delta-Sigma ADC with Robust Blocker Performance for Radio Receivers," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 860-870, Apr. 2016. https://doi.org/10.1109/JSSC.2016.2519395
  31. P. Shettigar and S. Pavan, "Design Techniques for Wideband Single-Bit Continuous-Time Delta-Sigma Modulators with FIR Feedback DACs," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2865-2879, Dec. 2012. https://doi.org/10.1109/JSSC.2012.2217871
  32. S. Billa, A. Sukumaran and S. Pavan, "Analysis and Design of Continuous-Time Delta-Sigma Converters Incorporating Chopping," in IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2350-2361, Sept. 2017. https://doi.org/10.1109/JSSC.2017.2717937
  33. Y. H. Leow, H. Tang, Z. C. Sun and L. Siek, "A 1 V 103 dB 3rd-Order Audio Continuous-Time Delta-Sigma ADC with Enhanced Noise Shaping in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2625-2638, Nov. 2016. https://doi.org/10.1109/JSSC.2016.2593777
  34. C. De Berti, P. Malcovati, L. Crespi and A. Baschirotto, "A 106 dB A-Weighted DR Low-Power Continuous-Time Sigma-Delta Modulator for MEMS Microphones," in IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1607-1618, Jul. 2016. https://doi.org/10.1109/JSSC.2016.2540811
  35. M. Jang, C. Lee and Y. Chae, "A 134-㎼ 99.4-dB SNDR Audio Continuous-Time Delta-Sigma Modulator with Chopped Negative-R and Tri-Level FIR-DAC," in IEEE Journal of Solid-State Circuits, Nov. 2020.
  36. D. Basak, D. Li and K. Pun, "A Gm-C Delta-Sigma Modula tor with a Merged Input-Feedback Gm Circuit for Nonlinearity Cancellation and Power Efficiency Enhancement," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1196-1209, Apr. 2018. https://doi.org/10.1109/TCSI.2017.2740501
  37. L. Lv, A. Jain, X. Zhou, J. Becker, Q. Li and M. Ortmanns, "A 0.4-V Gm-C Proportional-Integrator-Based Continuous-Time Delta-Sigma Modulator with 50-kHz BW and 74.4-dB SNDR," in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3256-3267, Nov. 2018. https://doi.org/10.1109/jssc.2018.2866084
  38. J. A. Cherry and W. M. Snelgrove, "Excess Loop Delay in Continuous-Time Delta-Sigma Modulators," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 4, pp. 376-389, Apr. 1999. https://doi.org/10.1109/82.755409
  39. K. El-Sankary, H. H. Alamdari and E. I. El-Masry, "An Adaptive ELD Compensation Technique Using a Predictive Comparator," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 8, pp. 619-623, Aug. 2009. https://doi.org/10.1109/TCSII.2009.2025620
  40. J. Guo and M. E. Magana, "Compensation Method of The Excess Loop Delay in Continuous-Time Delta-Sigma Analog-to-Digital Converters Based on Model Matching Approach," in IET Circuits, Devices & Systems, vol. 10, no. 1, pp. 29-36, Jan. 2016. https://doi.org/10.1049/iet-cds.2014.0368
  41. Y. Hu, H. Venkatram, N. Maghari and U. Moon, "A Continu ous-Time Delta-Sigma ADC Utilizing Time Information for Two Cycles of Excess Loop Delay Compensation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 11, pp. 1063-1067, Nov. 2015. https://doi.org/10.1109/TCSII.2015.2457011
  42. T. He, Y. Zhang and G. C. Temes, "Digital Excess Loop Delay Compensation Technique with Embedded Truncator for Continuous-Time Delta-Sigma Modulators," in Electronics Letters, vol. 52, no. 1, pp. 20-21, Jan. 2016. https://doi.org/10.1049/el.2015.1595
  43. S. Kim, S. Na, Y. Yang and S. Kim, "A 2-MHz BW 82-dB DR Continuous-Time Delta-Sigma Modulator with a Capacitor-Based Voltage DAC for ELD Compensation," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp. 1999-2006, Oct. 2018. https://doi.org/10.1109/TVLSI.2018.2841058
  44. M. J. Burke and D. T. Gleeson, "A Micropower Dry-Electrode ECG Preamplifier," in IEEE Transactions on Biomedical Engineering, vol. 47, no. 2, pp. 155-162, Feb. 2000. https://doi.org/10.1109/10.821734
  45. E. M. Spinelli, R. Pallas-Areny and M. A. Mayosky, "AC-Coupled Front-End for Biopotential Measurements," in IEEE Transactions on Biomedical Engineering, vol. 50, no. 3, pp. 391-395, Mar. 2003. https://doi.org/10.1109/tbme.2003.808826
  46. E. M. Spinelli, N. Martinez, M. A. Mayosky and R. Pallas-Areny, "A Novel Fully Differential Biopotential Amplifier with DC Suppression," in IEEE Transactions on Biomedical Engineering, vol. 51, no. 8, pp. 1444-1448, Aug. 2004. https://doi.org/10.1109/tbme.2004.827931
  47. R. Wu, K. A. A. Makinwa and J. H. Huijsing, "A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/ƒ Noise Corner and An AC-Coupled Ripple-Reduction Loop," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, pp. 322-323,323a, Feb. 2009.
  48. J. H. Huijsing, Operational Amplifier: Theory and Design. Boston, MA: Kluwer Academic, 2001.
  49. Q. Fan, F. Sebastiano, J. H. Huijsing and K. A. A. Makinwa, "A 1.8 ㎼ 60 nV √ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes," in IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1534-1543, Jul. 2011. https://doi.org/10.1109/JSSC.2011.2143610
  50. C. Lee and J. Song, "A Chopper Stabilized Current-Feedback Instrumentation Amplifier for EEG Acquisition Applications," in IEEE Access, vol. 7, pp. 11565-11569, Jan. 2019. https://doi.org/10.1109/access.2019.2892502
  51. T. Denison, K. Consoer, W. Santa, A. Avestruz, J. Cooley and A. Kelly, "A 2 ㎼ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007. https://doi.org/10.1109/JSSC.2007.908664
  52. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag and A. P. Chandrakasan, "A Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor for a Chronic Seizure Detection System," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 804-816, Apr. 2010. https://doi.org/10.1109/JSSC.2010.2042245
  53. R. R. Harrison and C. Charles, "A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications," in IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958-965, Jun. 2003. https://doi.org/10.1109/JSSC.2003.811979
  54. D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel and B. P. Otis, "A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquisition," in IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2198-2209, Oct. 2010. https://doi.org/10.1109/JSSC.2010.2063930
  55. H. Jiang, C. Ligouras, S. Nihtianov and K. A. A. Makinwa, "A 4.5 nV/√Hz Capacitively Coupled Continuous-Time Sigma-Delta Modulator with an Energy-Efficient Chopping Scheme," in IEEE Solid-State Circuits Letters, vol. 1, no. 1, pp. 18-21, Jan. 2018. https://doi.org/10.1109/lssc.2018.2803447