DOI QR코드

DOI QR Code

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Jinhong (School of Energy Systems Engineering, Chung-Ang University) ;
  • Park, Jae Hyung (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Seunghyeon (School of Energy Systems Engineering, Chung-Ang University) ;
  • Lim, Taeseob (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Jin Ho (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Sin (School of Energy Systems Engineering, Chung-Ang University) ;
  • Lee, Bongsoo (School of Energy Systems Engineering, Chung-Ang University)
  • Received : 2022.02.08
  • Accepted : 2022.03.30
  • Published : 2022.09.25

Abstract

We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

Keywords

Acknowledgement

This work was supported by the Chung-Ang University Research Scholarship Grants in 2019 and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020M2D2A2062457, No. 2020M2D8A2066404).

References

  1. S. Endo, S. Kimura, T. Takatsuji, K. Nanasawa, T. Imanaka, K. Shizuma, Measurement of soil contamination by radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation, J. Environ. Radioact. 111 (2012) 18-27. https://doi.org/10.1016/j.jenvrad.2011.11.006
  2. H. Terada, H. Nagai, K. Tsuduki, A. Furuno, M. Kadowaki, T. Kakefuda, Refinement of source term and atmospheric dispersion simulations of radionuclides during the Fukushima Daiichi Nuclear Power Station accident, J. Environ. Radioact. 213 (2020), 106104. https://doi.org/10.1016/j.jenvrad.2019.106104
  3. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T.M. Nakanishi, T. Yaita, T. Kogure, Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima, Sci. Rep. 6 (2016), 21543. https://doi.org/10.1038/srep21543
  4. S.D. Lee, Current and Emerging Post-Fukushima Technologies, and Techniques, and Practices for Wide Area Radiological Survey, Remediation, and Waste Management, EPA, 2016, p. 11. EPA/600/R-16/140.
  5. D. Connor, P.G. Martin, T.B. Scott, Airborne radiation mapping: overview and application of current and future aerial systems, Int. J. Rem. Sens. 37 (2016) 5953-5987. https://doi.org/10.1080/01431161.2016.1252474
  6. A.A. Green, Leveling airborne gamma-radiation data using between-channel correlation information, Geophysics 52 (1987) 1557-1562. https://doi.org/10.1190/1.1442272
  7. A. Nohtomi, N. Sugiura, T. Itho, T. Torii, On-line evaluation of spatial dosedistribution by using a 15m-long plastic scintillation-fiber detector, in: Proceedings of 2008 IEEE Nuclear Science Symposium Conference Record, 2008, pp. 19-25 (October, Dresden, Germany).
  8. S.D. Lee, Plastic Scintillation Fibers for Radiological Contamination Surveys, EPA, 2018, pp. 2-3. EPA/600/R-17/370.
  9. J. Koarashi, M. Atarashi-Andoh, T. Matsunaga, Y. Sanada, Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident, Sci. Rep. 6 (2016) 38591. https://doi.org/10.1038/srep38591
  10. C. Masamichi, JAEA R&D Review 2014, JAEA, 2015, p. 14.
  11. E.W. Katengeza, Y. Sanada, K. Yoshimura, K. Ochi, T. Iimoto, The ecological half-life of radiocesium in surficial bottom sediments of five ponds in Fukushima based on in situ measurements with plastic scintillation fibers, Environ. Sci. Process. 22 (2020) 1566-1574.
  12. S. Soramoto, M. Notani, Y. Fukano, S. Imai, T. Iguchi, M. Zakazawa, A study of distributed radiation sensing method using plastic scintillation fiber, in: Proceedings of the 7th Workshop on Radiation Detectors and Their Uses, 1993, pp. 26-27. January, Tsukuba, Japan.
  13. T. Emoto, T. Trorii, T. Nozaki, H. Ando, Measurement of spatial dose-rate distribution using a position sensitive detector, in: Proceedings of the 8th Workshop on Radiation Detectors and Their Uses, 1994, pp. 25-27. January, Tsukuba, Japan.
  14. D.L. Chichester, S.M. Watson, J.T. Johnson, Comparison of BCF-10, BCF-12, and BCF-20 scintillation fiber use in a 1-dimensional linear sensor, in: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 2012, 29 October-3 November, CA, USA.
  15. H. Gamo, M. Kondo, T. Hashimoto, R. Yayama, T. Tsukiyama, Development of a PSF-detector for contaminated areas, Prog. Nucl. Energy 4 (2014) 695-696.
  16. S. Song, J. Kim, J.H. Park, S. Kim, T. Lim, J.H. Kim, J.H. Moon, B. Lee, High-spatialresolution position-sensitive plastic scintillation optical fiber bundle detector, Photonics 8 (2021) 26. https://doi.org/10.3390/photonics8020026
  17. Kuraray, Plastic scintillating fibers, Available online: https://www.kuraray. com/uploads/5a717515df6f5/PR0150_psf01.pdf.
  18. K.W. Jang, W.J. Yoo, J. Moon, K.T. Han, J.-Y. Park, B. Lee, Measurements of relative depth doses and cerenkov light using a scintillating fiber-optic dosimeter with Co-60 radiotherapy, Appl. Radiat. Isot. 70 (2012) 275.
  19. R.L. Heath, Scintillation Spectrometry gamma-ray spectrum Catalogue, Available online: https://gammaray.inl.gov/Shared%Documents/naicat.pdf..
  20. NIST, XCOM Photon Cross Sections Database, Available online: http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
  21. NIST, Standard Reference Database 124, Available online: https://physics.nist.gov/cgi-bin/Star/e_table.pl.
  22. C.P. Dautov, M.S. Ozerdem, Wavelet transform and signal denoising using Wavelet method, in: Proceedings of 2018 26th Signal Processing and Communications Applications Conference, 2018, pp. 2-5. May, Izmir, Turkey.
  23. R.J. Aliaga, Real-time estimation of zero crossings of sampled signals for timing using cubic spline interpolation, IEEE Trans. Nucl. Sci. 64 (2017) 2414-2422.
  24. MathWorks, MATLAB Function Reference, Available online: https://kr.mathworks.com/help/pdf_doc/matlab/matlab_ref.pdf.
  25. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, second ed., Springer, New York, 1994.
  26. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, pp. 2-4. August, OR, USA.
  27. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP Publ. 103 Ann ICRP. 37 (2007) 36-131.