• Title/Summary/Keyword: almost semi-invariant submanifold

Search Result 15, Processing Time 0.031 seconds

ON SEMI-INVARIANT SUBMANIFOLDS OF LORENTZIAN ALMOST PARACONTACT MANIFOLDS

  • Tripathi, Mukut-Mani
    • The Pure and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Semi-invariant submanifolds of Lorentzian almost paracontact mani-folds are studied. Integrability of certain distributions on the submanifold are in vestigated. It has been proved that a LP-Sasakian manifold does not admit a proper semi-invariant submanifold.

  • PDF

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX HYPERBOLIC SPACE

  • KI, U-HANG;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.91-111
    • /
    • 2001
  • In this paper we prove the following : Let M be a semi-invariant submanifold with almost contact metric structure (${\phi}$, ${\xi}$, g) of codimension 3 in a complex hyperbolic space $H_{n+1}{\mathbb{C}}$. Suppose that the third fundamental form n satisfies $dn=2{\theta}{\omega}$ for a certain scalar ${\theta}({\leq}{\frac{c}{2}})$, where ${\omega}(X,\;Y)=g(X,\;{\phi}Y)$ for any vectors X and Y on M. Then M has constant eigenvalues correponding the shape operator A in the direction of the distinguished normal and the structure vector ${\xi}$ is an eigenvector of A if and only if M is locally congruent to one of the type $A_0$, $A_1$, $A_2$ or B in $H_n{\mathbb{C}}$.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX SPACE FORM IN TERMS OF THE STRUCTURE JACOBI OPERATOR

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.229-257
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, 𝜉, 𝜂, g) in a complex space form Mn+1(c), c ≠ 0. We denote by A and R𝜉 the shape operator in the direction of distinguished normal vector field and the structure Jacobi operator with respect to the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(< 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies R𝜉A = AR𝜉 and at the same time ∇𝜉R𝜉 = 0 on M, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM

  • Ki, U-Hang
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.41-77
    • /
    • 2021
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (��, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ = R(·, ξ)ξ and A(i) be Jacobi operator with respect to the structure vector field ξ and be the second fundamental form in the direction of the unit normal C(i), respectively. Suppose that the third fundamental form t satisfies dt(X, Y ) = 2��g(��X, Y ) for certain scalar ��(≠ 2c)and any vector fields X and Y and at the same time Rξ is ��∇ξξ-parallel, then M is a Hopf hypersurface in Mn(c) provided that it satisfies RξA(1) = A(1)Rξ, RξA(2) = A(2)Rξ and ${\bar{r}}-2(n-1)c{\leq}0$, where ${\bar{r}}$ denotes the scalar curvature of M.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.