• Title/Summary/Keyword: almost Einstein manifold

Search Result 33, Processing Time 0.099 seconds

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.

SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS

  • ERKEN, I. KUPELI
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.457-468
    • /
    • 2015
  • The aim of present paper is to investigate 3-dimensional ${\xi}$-projectively flt and $\tilde{\varphi}$-projectively flt normal almost paracontact metric manifolds. As a first step, we proved that if the 3-dimensional normal almost paracontact metric manifold is ${\xi}$-projectively flt then ${\Delta}{\beta}=0$. If additionally ${\beta}$ is constant then the manifold is ${\beta}$-para-Sasakian. Later, we proved that a 3-dimensional normal almost paracontact metric manifold is $\tilde{\varphi}$-projectively flt if and only if it is an Einstein manifold for ${\alpha},{\beta}=const$. Finally, we constructed an example to illustrate the results obtained in previous sections.

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

ON A TYPE OF GENERALIZED SYMMETRIC MANIFOLDS

  • Kumar, Rajesh
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.921-934
    • /
    • 2019
  • The object of the present paper is to study generalized pseudo-projectively symmetric manifolds and Einstein generalized pseudo-projectively symmetric manifolds. Finally, the existence of generalized pseudo-projectively symmetric manifolds have been proved by two non-trivial examples.

ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES

  • Dokuzova, Iva
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1441-1456
    • /
    • 2017
  • We consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^3=id$. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We introduce three classes of such manifolds. Two of them are determined by special properties of the curvature tensor. The third class is composed by manifolds whose structure q is parallel with respect to the Levi-Civita connection of g. We obtain some curvature properties of these manifolds (M, g, q) and give some explicit examples of such manifolds.

MIAO-TAM EQUATION ON ALMOST COKÄHLER MANIFOLDS

  • Mandal, Tarak
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.881-891
    • /
    • 2022
  • In the present paper, we have studied Miao-Tam equation on three dimensional almost coKähler manifolds. We have also proved that there does not exist non-trivial solution of Miao-Tam equation on the said manifolds if the dimension is greater than three. Also we give an example to verify the deduced results.

ON 3-DIMENSIONAL NORMAL ALMOST CONTACT METRIC MANIFOLDS SATISFYING CERTAIN CURVATURE CONDITIONS

  • De, Uday Chand;Mondal, Abul Kalam
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • The object of the present paper is to study 3-dimensional normal almost contact metric manifolds satisfying certain curvature conditions. Among others it is proved that a parallel symmetric (0, 2) tensor field in a 3-dimensional non-cosympletic normal almost contact metric manifold is a constant multiple of the associated metric tensor and there does not exist a non-zero parallel 2-form. Also we obtain some equivalent conditions on a 3-dimensional normal almost contact metric manifold and we prove that if a 3-dimensional normal almost contact metric manifold which is not a ${\beta}$-Sasakian manifold satisfies cyclic parallel Ricci tensor, then the manifold is a manifold of constant curvature. Finally we prove the existence of such a manifold by a concrete example.