• Title/Summary/Keyword: algorithmic

Search Result 385, Processing Time 0.026 seconds

A high-speed algorithmic ADC based on Maximum Circuit

  • Chaikla, Amphawan;Pukkalanun, Tattaya;Riewruja, Vanchai;Wangwiwattana, Chaleompun;Masuchun, Ruedee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.73-77
    • /
    • 2003
  • This paper presents a high-speed algorithmic analog-to-digital converter (ADC), which is based on gray coding. The realization method makes use of a two-input maximum circuit to provide a high-speed operation and a low-distortion in the transfer characteristic. The proposed ADC based on the CMOS integrated circuit technique is simple and suitable for implementing a highresolution ADC. The performances of the proposed circuit were studied using the PSPICE analog simulation program. The simulation-results verifying the circuit performances are agreed with the expected values.

  • PDF

Model Algorithmic Control of Grade Change Operations in Paper Mills (지종교체 공정의 예측제어)

  • Park, Jong-Ho;Yeo, Yeong-Gu;Kim, Yeong-Gon;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.107-114
    • /
    • 2004
  • In this work the Model algorithmic control method is applied to control the grade change operations in paper mills. The neural network model for the grade change operations is identified first model is then extracted from the neural model. Results of simulations for MAC control of grade change operations are compared with plant operation data response. From the comparison, we can see that the proposed MAC method exhibits faster response for the grade change of paper and achieves stable steady-state.

  • PDF

Development and Analysis of Elementary Dolittle Programming Problems using Algorithmic Thinking-based Problem Model (알고리즘적 사고 문제 모델을 이용한 두리틀 프로그래밍 문제 개발 및 적용)

  • Hur, Kyeong
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.69-74
    • /
    • 2011
  • This paper proposes elementary Dolittle programming problems using the algorithmic thinking-based problem model with material factors in the elementary Dolittle programming. And this paper proves the validity of developed Dolittle programming problems in defining them as algorithmic thinking-based problems through experiments. The experimental results are analyzed in views of variety and effectiveness evaluation of answer algorithms and suitability of allocating degrees of difficulties to the developed Dolittle programming problems.

  • PDF

Real-Time Optimization for Mobile Robot Based on Algorithmic Control

  • Kobayashi, Tomoaki;Maenishi, Junichi;Imae, Joe;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2102-2107
    • /
    • 2005
  • In this paper, a real-time optimization method for nonlinear dynamical systems is proposed. The proposed method is based on the algorithms of numerical solutions for optimal control problems. We deal with a real-time collision-free motion control of a nonholonomic mobile robot, which has input restrictions of actuators. The effectiveness of the algorithmic method is demonstrated through numerical and experimental results. The mobile robot which we have developed is able to avoid moving obstacles skillfully. Therefore the proposed controller works well in real time.

  • PDF

Design of Programming Learning Process using Hybrid Programming Environment for Computing Education

  • Kwon, Dai-Young;Yoon, Il-Kyu;Lee, Won-Gyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1799-1813
    • /
    • 2011
  • Many researches indicate that programming learning could help improve problem solving skills through algorithmic thinking. But in general, programming learning has been focused on programming language features and it also gave a heavy cognitive load to learners. Therefore, this paper proposes a programming activity process to improve novice programming learners' algorithmic thinking efficiently. An experiment was performed to measure the effectiveness of the proposed programming activity process. After the experiment, the learners' perception on programming was shown to be changed, to effective activity in improving problem solving.

A Low-Delay MDCT/IMDCT

  • Lee, Sangkil;Lee, Insung
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.935-938
    • /
    • 2013
  • This letter presents an algorithm for selecting a low delay for the modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT). The implementation of conventional MDCT and IMDCT requires a 50% overlap-add (OLA) for a perfect reconstruction. In the OLA process, an algorithmic delay in the frame length is employed. A reduced overlap window and MDCT/IMDCT phase shifting is used to reduce the algorithmic delay. The performance of the proposed algorithm is evaluated by applying the low-delay MDCT to the G.729.1 speech codec.

ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE WITH $PH_2$-RETRIAL TIMES

  • Shin, Yang-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.803-811
    • /
    • 2011
  • We present an algorithmic solution for the stationary distribution of the M/M/c retrial queue in which the retrial times of each customer in orbit are of phase type distribution of order 2. The system is modeled by the level dependent quasi-birth-and-death (LDQBD) process.

Interpretation of Pre-service Teachers' Knowledge by Shulman-Fischbein Framework : For Students' Errors in Plane Figures (평면도형 영역에서 Shulman-Fischbein 개념틀을 활용한 학생의 오류에 대한 예비 교사의 지식 분석)

  • Kim, Ji Sun
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.297-314
    • /
    • 2018
  • This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.

An Analysis on the Elementary Students' Problem Solving Process in the Intuitive Stages (직관적 수준에서 초등학생들의 수학 문제해결 과정 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.3
    • /
    • pp.241-258
    • /
    • 2015
  • The purpose of this paper is to examine the students' mathematics problem solving process in the intuitive stages. For this, researcher developed the questionnaire which consisted of problems in relation to intuitive and algorithmic problem solving. 73 fifth grade and 66 sixth grade elementary students participated in this study. I got the conclusion as follows: Elementary students' intuitive problem solving ability is very low. The rate of algorithmic problem solving is higher than that of intuitive problem solving in number and operation areas. The rate of intuitive problem solving is higher in figure and measurement areas. Students inclined to solve the problem intuitively in that case there is no clue for algorithmic solution. So, I suggest the development of problems which can be solved in the intuitive stage and the preparation of the methods to experience the insight and intuition.

Development of Experimental Guide Materials for Algorithmic Expression - Focusing on Magnetic Properties Experiment - (알고리즘 표현의 실험 안내 자료 개발 - 자석의 성질 실험을 중심으로 -)

  • Kang, Eunju;Kim, Jina
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.3
    • /
    • pp.326-342
    • /
    • 2021
  • In this study, experimental guide materials for teachers were developed so that algorithm expression, the core of computational thinking, can be applied to experimental activities. The experimental manuals presented in text was converted into an algorithmic form with a linear, branched, and repetitive structure according to the information visualization process using flowchart symbols. As an example, an experiment guide materials was developed by applying an algorithm expression to an experiment to find out the properties of a magnet. The developed experiment guide materials is different from the existing experiment guide materials expressed only sequentially in that it has an algorithmic structure of branching and repetition in which the suitability and judgment of information are expressed, and that the experiment process is visualized and expressed. It is expected that the experimental guide materials developed in this study will help teachers to understand algorithmic thinking and to implement experiments using it.