Abstract
The purpose of this paper is to examine the students' mathematics problem solving process in the intuitive stages. For this, researcher developed the questionnaire which consisted of problems in relation to intuitive and algorithmic problem solving. 73 fifth grade and 66 sixth grade elementary students participated in this study. I got the conclusion as follows: Elementary students' intuitive problem solving ability is very low. The rate of algorithmic problem solving is higher than that of intuitive problem solving in number and operation areas. The rate of intuitive problem solving is higher in figure and measurement areas. Students inclined to solve the problem intuitively in that case there is no clue for algorithmic solution. So, I suggest the development of problems which can be solved in the intuitive stage and the preparation of the methods to experience the insight and intuition.
본 연구의 목적은 직관적 수준에서 초등학생들의 수학 문제해결 과정을 분석하는 것이다. 이를 위해 수와 연산, 도형 및 측정 영역을 대상으로, 알고리즘에 의한 해결에서부터 직관적 판단에 의해 해결이 가능한 8문제로 구성된 검사 도구를 제작하여 조사연구를 실시하였다. 직관적 수준에 따른 결과 분석에서는 본 연구에서 설정한 분석틀을 따랐다. 분석 결과, 직관적 수준에서 해결 가능한 문제에 대한 정답률이 전반적으로 낮게 나타났다. 내용 영역별로 살펴보면, 수와 연산 영역에서는 알고리즘 수준에 의한 정답률이 높았지만, 도형 및 측정 영역에서는 직관적 수준에 의한 정답률이 높았다. 결과 분석을 통해 알고리즘 적용에 필요한 요소가 문제에 제시되지 않은 경우에 학생들은 문제 구조에 대한 통찰을 통해 답을 하려는 경향을 가지고 있다는 것을 알 수 있었다. 이에 통찰을 통해 직관적으로 해결할 수 있는 다양한 문제의 개발과 직관적 원리에 의한 교육 방안을 마련할 필요성을 제기하였다.