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ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE

WITH PH2-RETRIAL TIMES†

YANG WOO SHIN

Abstract. We present an algorithmic solution for the stationary distribu-
tion of the M/M/c retrial queue in which the retrial times of each customer
in orbit are of phase type distribution of order 2. The system is modeled
by the level dependent quasi-birth-and-death (LDQBD) process.
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1. Introduction

Consider the retrial queue which consists of an orbit with infinite capacity
and a service facility that has c servers and no waiting space. When an arriving
customer finds that all servers are busy, the customer joins a virtual pool of
blocked customers called orbit and repeats its request after a random amount of
time, called retrial time until the customer gets into the service facility. Retrial
queues have been used to model problems in many application areas including
telephone, computer and communication systems.

The phase type distributions (PH-distribution) can be used to approximate
general distribution and to fit the observed data. The algorithmic solutions for
retrial queues with PH service times are extensively exploited [7]. However, the
literature about the explicit or algorithmic solution for the retrial queues with
PH retrial time is very limited but there some approximations [5, 10, 13] and
system properties such as stability condition [8] and stochastic order relation
[10]. For comprehensive survey of the main results and literature, see [3, 6].

In this paper, we consider an M/M/c retrial queue with PH retrial time.
The main difficulty of analyzing the system with PH retrial times is due to the
fact that the number of phases for describing the behavior of the customers in
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orbit becomes extremely large as the number of customers in orbit increases and
computational feasibility is quickly trapped into the curse of dimension. For
example, the models in [1, 2] use the phase type distribution of order mn as a
remaining retrial time in the system with PH retrial time of order m denoted
by PHm when there are n customers in orbit. The M/M/c retrial queue with
PH2 retrial time can be modeled by the level dependent quasi-birth-and-death
(LDQBD) process whose size of block matrix corresponding to the level n is of
(c+ 1)(n+ 1) by considering the number of customers in each phase is counted
instead of considering the phases of all customers. So many approximations are
compared with the exact solutions of the system PH2 retrial time and Gauss-
Seidel iterative method is suggested for computing the exact ones e.g. [5, 13].
Besides on the computational feasibility, PH2 distribution can be used to match
the first three moments of a distribution of nonnegative random variables [12].

The objectives of this paper is to present an effective algorithm for computing
the stationary distribution of the number of customers in the system for M/M/c
retrial queue with PH2 retrial time.

In section 2, the mathematical model is described in detail. The algorith-
mic solutions are proposed in section 3. Numerical results and conclusions are
presented in section 4 and 5, respectively.

2. Model description

Consider an M/M/c retrial queue which consists of infinite-capacity orbit
and the service facility with c identical servers and no waiting positions. Service
times of customers are independent of each other and have a common exponential
distribution with parameter µ. Customers arrive according to a Poisson process
with rate λ. The customer who finds that all servers are busy upon its arrival
joins orbit and tries to its luck again after a random amount of time until the
customer gets into the service facility. The access of each customer from orbit to
the service facility is governed by the phase type distribution PH(ααα,ΓΓΓ) of order
2, where ααα = (α1, α2) (α1 + α2 = 1) and ΓΓΓ is a 2× 2 matrix with

ΓΓΓ =

( −(γ12 + γ1) γ12
γ21 −(γ21 + γ2)

)
, ΓΓΓ0 = −ΓΓΓe =

(
γ1
γ2

)
.

Let N(t) be the number of customers in orbit, C(t) the number of busy servers
and N1(t) the number of customers in phase 1 at time t. Then the stochastic
process XXX = {(N(t), C(t), N1(t)), t ≥ 0} is a Markov chain with state space
S = {(n, i, j), n ≥ 0, 0 ≤ i ≤ c, 0 ≤ j ≤ n}. Denote the set nnn = {(n, i, j), 0 ≤ i ≤
c, 0 ≤ j ≤ n} by level nnn and let kkkn = {(n, k, j), 0 ≤ j ≤ n}. Writing the states
lexicographic order, the generator of XXX is given by

Q =




Q
(0)
1 Q

(0)
0

Q
(1)
2 Q

(1)
1 Q

(1)
0

Q
(2)
2 Q

(2)
1 Q

(2)
0

. . .
. . .

. . .




.
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The Q
(n)
0 is of (n+ 1)(c+ 1)× (n+ 2)(c+ 1) matrix of the form

Q
(n)
0 =




0n+1 1n+1 · · · cn+1

0n

1n O
...
cn λA(n)


, (1)

where A(n) is the (n+1)× (n+2) matrix with (i, j) component (0 ≤ i ≤ n, 0 ≤
j ≤ n+ 1)

[A(n)]ij =





α2, j = i
α1, j = i+ 1
0, otherwise

The Q
(n)
1 is of (n+ 1)(c+ 1)× (n+ 1)(c+ 1) matrix of the form

Q
(n)
1 =




B
(n)
0 λIn+1

µIn+1 B
(n)
1 λIn+1

. . .
. . .

. . .

(c− 1)µIn+1 B
(n)
c−1 λIn+1

cµIn+1 B
(n)
c




,

where In+1 is the identity matrix of order n + 1 and B
(n)
k is the tridiagonal

matrix of size (n+ 1)× (n+ 1). The (i, j) component of B
(n)
k is as follows: for

0 ≤ k ≤ c− 1, 0 ≤ i, j ≤ n

[B
(n)
k ]ij =





−(λ+ kµ+ i(γ1 + γ12) + (n− i)(γ2 + γ21)), j = i
iγ12, j = i− 1
(n− i)γ21, j = i+ 1
0, otherwise

and

[B(n)
c ]ij =





−(λ+ cµ+ i(γ12 + γ1α2) + (n− i)(γ21 + γ2α1)), j = i
i(γ12 + γ1α2), j = i− 1
(n− i)(γ21 + γ2α1), j = i+ 1
0, otherwise

The Q
(n)
2 is of (n+ 1)(c+ 1)× n(c+ 1) matrix of the form

Q
(n)
2 =




0n−1 1n−1 2n−1 · · · cn−1

0n C(n)

1n C(n)

...
. . .

(c− 1)n C(n)

cn



, (2)
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where C(n) is the (n+ 1)× n matrix with (i, j) component (0 ≤ i ≤ n, 0 ≤ j ≤
n− 1)

[C(n)]ij =





(n− i)γ2, j = i
iγ1, j = i− 1
0, otherwise

3. Algorithmic Solution

We assume that ρ = λ
cµ < 1 which guarantees the existence of the stationary

distribution of XXX [8] and let xnij = P (N = n,C = i, J = j) , where N , C and
J are the stationary versions of N(t), C(t) and J(t), respectively. Write the
stationary distribution of Q in the block partitioned form xxx = (xxx0,xxx1,xxx2, · · · )
with xxxn = (xnij , 0 ≤ i ≤ c, 0 ≤ j ≤ n), n ≥ 0. In order to calculate the
stationary distribution xxx, it is necessary to have the family of the matrices
{Rk, k ≥ 0} which are the minimal nonnegative solutions to the systems of
equations

Q
(k−1)
0 +R(k)Q

(k)
1 +R(k)(R(k+1)Q

(k+1)
2 ) = 0, k ≥ 1. (3)

It follows from the special structure of the matrix Q
(k−1)
0 that

R(k) = Q
(k−1)
0 (−Q

(k)
1 −R(k+1)Q

(k+1)
2 )−1 (4)

has the following formula

R(k) =

(
O

R
(k)
0 R

(k)
1 · · · R

(k)
c

)
, k ≥ 1, (5)

where R
(k)
j is the k × (k + 1) matrix and O is the kc× (k + 1)c matrix. Thus it

follows from Bright and Taylor [4] that the stationary distribution xxx = (xxxi, i ≥ 0)
is given by

xxxn = xxx0

(
n∏

k=1

R(k)

)

= x0c0

(
n−1∏

k=1

R(k)
c

)
[R

(n)
0 R

(n)
1 · · · R(n)

c ], n ≥ 1, (6)

and xxx0 is the unique solution of the equation

xxx0(Q
(0)
1 +R(1)Q

(1)
2 ) = 0 (7)

with the normalizing condition

xxx0ec+1 + x0c0

( ∞∑
n=1

(
n−1∏

k=1

R(k)
c

)
[R

(n)
0 R

(n)
1 · · · R(n)

c ]e(n+1)(c+1)

)
= 1, (8)
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where en is the n × 1 matrix whose components are all 1. Once xxx is obtained,
the distribution of N and C are calculated by the formula

P (N = n) =

c∑

k=0

n∑

j=0

xnkj ,

P (C = k) =

∞∑
n=0

n∑

j=0

xnkj .

The formula R(k) in (4) is given by the unknown term R(k+1). So we have
to truncate the matrix Q by a finite level, say K. Once a truncation level K is
determined, the original system Q is approximated by one that has finite orbit
size K and new arrivals are lost when the system is full, that is, N(t) = K and
C(t) = c. The generator corresponding to the truncated system is given by

QK =




Q
(0)
1 Q

(0)
0

Q
(1)
2 Q

(1)
1 Q

(1)
0

. . .
. . .

. . .

Q
(K−1)
2 Q

(K−1)
1 Q

(K−1)
0

Q
(K)
2 Q̃

(K)
1




, (9)

where the block (c, c)-matrix component of Q̃
(K)
1 is B

(n)
c +λIK+1 and other com-

ponents are the same as those of Q
(K)
1 . Once a truncation level K is determined,

approximating R(K) by

R̃(K) = Q
(K−1)
0 (−Q̃

(K)
1 )−1 (10)

and the R(n), n = K − 1,K − 2, · · · , 1 are determined by the formula (4). The

stationary distribution xxxK = (xxxK
n , n = 0, 1, · · · ,K) of Q̂K is given by (6) and

(7) with (7).

The matrices R̃(n) can be effectively obtained using the following well known
results for the inverse of a partitioned matrix (e.g. see [9]) and the method
for computing the fundamental matrix of the transient quasi-birth-and death
process in Shin [11].

Lemma 3.1. Let a square matrix A be partitioned as

A =

(
A11 A12

A21 A22

)
,

where A11 and A22 are also square matrices. Then A−1 is given by

A−1 =

(
(A11 −A12A

−1
22 A21)

−1 A−1
11 A12(A21A

−1
11 A12 −A22)

−1

(A21A
−1
11 A12 −A22)

−1A21A
−1
11 −(A21A

−1
11 A12 −A22)

−1

)
,

provided that all the relevant inverse exists.

The following lemma is immediate from [11, Proposition 2.1].
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Lemma 3.2. Let Q
(n)
11 be (k + 1)c × (k + 1)c matrix consisting of the north-

left c blocks of Q
(n)
1 denote the inverse (−Q

(n)
11 )−1 by the block partitioned form

(−Q
(n)
11 )−1 = (X

(n)
ij )0≤i,j≤c−1, where X

(n)
ij is the (n+ 1)× (n+ 1) matrix. Let

Sc−1 = [−B
(n)
c−1]

−1,

Si = [−(B
(n)
i + (i+ 1)µλSi+1)]

−1, i = c− 2, c− 3, · · · , 0.
Then X

(n)
ij are given as follows:

(1) The first row and column blocks : X
(n)
00 = S0 and

X
(n)
0j = λX

(n)
0,j−1Sj , X

(n)
j0 = iµSjX

(n)
j−1,0, j = 1, · · · , c− 1

(2) The i-th (1 ≤ i ≤ c − 2) row and column blocks : X
(n)
ii = (I + λX

(n)
i,i−1)Si

and

X
(n)
ij = λX

(n)
i,j−1Sj , X

(n)
ji = jµSjX

(n)
j−1,i, j = i+ 1, i+ 2, · · · , c− 1.

(3) The (c− 1, c− 1)-block component :

X
(n)
c−1,c−1 = (I + λX

(n)
c−1,c−2)Sc−1,

Proposition 3.3. Write the Q̃
(n)
1 in the block partitioned form

Q̃
(n)
1 =

(
Q

(n)
11 Q

(n)
12

Q
(n)
21 Q̃

(n)
22

)
,

where Q̃
(n)
22 = B

(n)
c + λIn+1 and let

R̃(n) = Q
(n−1)
0 (−Q̃

(n)
1 )−1 =

(
O

R̃
(n)
0 R̃

(n)
1 · · · R̃

(n)
c

)
,

where R̃
(n)
j is the n× (n+ 1) matrix. Then

R̃
(n)
j =

{
λcµA(n−1)D̃(n)X

(n)
c−1,j , j = 0, 1, · · · , c− 1

λA(n−1)D̃(n), j = c,
(11)

where
D̃(n) = [−(B(n)

c + λIn+1)− λcµX
(n)
c−1,c−1]

−1.

Proposition 3.4. Writing Q̂(n) = Q
(n)
1 +R(n+1)Q

(n+1)
2 in the block partitioned

form

Q̂(n) =

(
Q

(n)
11 Q

(n)
12

Q̂
(n)
21 Q̂

(n)
22

)
,

where Q̂
(n)
22 = B

(n)
c +R

(n+1)
c−1 C(n+1) is square matrix of size n+ 1. Then

R
(n)
j = λA(n−1)D(n)

[
c−2∑
i=0

R
(n+1)
i C(n+1)X

(n)
i+1,j + cµX

(n)
c−1,j

]
, 0 ≤ j ≤ c− 1 (12)

R(n)
c = λA(n−1)D(n), (13)
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where

D(n) = −
[
B(n)

c +R
(n+1)
c−1 C(n+1) + λ

c−2∑
j=0

R
(n+1)
j C(n+1)X

(n)
j+1,c−1 + λcµX

(n)
c−1,c−1

]−1

Proof. It follows from (4) and (3.1) that

[R
(k)
0 , R

(k)
1 , · · · , R(k)

c−1] = λA(k−1)D(n)Q̂
(n)
21 (Q

(n)
11 )−1

R(k)
c = λA(k−1)D(n),

where
D(n) = [(−Q̂

(n)
22 )− Q̂

(n)
21 (−Q

(n)
11 )−1Q

(n)
12 ]−1.

Noting

Q̂
(n)
21 =

[
0, R

(n+1)
0 C(n+1), · · · , R(n+1)

c−3 C(n+1), R
(n+1)
c−2 C(n+1) + cµI

]
,

Q̂
(n)
22 = B(n)

c +R
(n+1)
c−1 C(n+1)

and

(−Q
(n)
11 )−1Q

(n)
12 = λ




X
(n)
0,c−1

X
(n)
1,c−1
...

X
(n)
c−1,c−1




,

the formulae (12) and (13) are immediately obtained. ¤

Now we propose a criteria for selecting a truncation level K. Let NK and
CK be the number of customers in orbit and service facility in stationary state,
respectively. Enlarge K so that the distributions yyyK = (yKj , j = 0, 1, · · · ) with

yKj = P (NK = j) and zzzK of CK do not vary significantly as K increases. That
is, for given tolerance ε > 0, choose K such that

TOL = max(||yyyK − yyyK−1||∞, ||zzzK − zzzK−1||∞) < ε. (14)

As the level K varies until K satisfies (14), R(n), n = K,K − 1, · · · , 1 should be
computed repeatedly for computing xxxK . The algorithm needs to compute many
inverses of matrices. To avoid the repeating computation, it is necessary to
choose an appropriate initial truncation level K0. Many numerical experiments
show that the truncation level mainly depend on the traffic intensity ρ and the
first moment m1 of retrial time. So it is recommended to determine the initial
level K0 by the system with exponential retrial time with tolerance ε0 larger
than ε. The following algorithm summarizes the results above.

Algorithm
1. Determine the initial truncation level K0 and let K = K0.

Set xxxOLD = 0.
2. Compute R(K) using (11).
3. Compute R(n), n = K − 1, · · · , 1 using (12) and (13).
4. Compute xxxK using (6). Set xxxNEW = xxxK .
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5. Check the stopping criterion.
IF (TOL < ε) THEN STOP;
ELSE K := K + 1, xxxOLD := xxxNEW and GO TO 2. ENDIF;

4. Numerical results

We consider M/M/5 retrial queue with arrival rate µ = 1.0. Let T be the
retrial time and mi = E[T i], i = 1, 2, 3 and the squared coefficient of variation

C2
T =

m2−m2
1

m2
1

of T . The main objectives of numerical experiments are to in-

vestigate the feasibility of the algorithm. It follows from Little’s formula that
the mean number of busy servers E[C] = λ

µ is independent of the distribution of

retrial time and the numerical results for E[C] are omitted in the tables below.
Numerical results with truncation level K for the system with Erlang dis-

tribution E2 of order 2 and hyperexponential distribution H2 of retrial time of
order 2 with squared coefficient of variation C2

T = 2.0 are presented in Table 1.
The truncation level K is chosen by the stopping criteria TOL < ε = 10−6. The
hyperexponential distribution H2 of order 2 has the probability density function
of the form f(t) = pγ1e

−γ1t+(1− p)γ2e
−µ2t, t ≥ 0. The parameters used in Ta-

ble 1 are as follows p = 1
2

(
1 +

√
(C2

T − 1)/(C2
T + 1)

)
, γ1 = 2p

m1
and γ2 = 2(1−p)

m1
.

Table 1 shows that the truncation level mainly depends on the traffic intensity
ρ and the first moment m1 of retrial time.

Table 1. M/M/5 retrial queue with PH2 retrial time

Retrial time E2 H2(C
2
T = 2.0) H2(C

2
T = 10.0)

ρ m1 K PB E[N ] K PB E[N ] K PB E[N ]

0.3 0.1 9 0.0191 0.0108 9 0.0188 0.0121 9 0.0187 0.0150
1.0 9 0.0163 0.0300 9 0.0166 0.0352 10 0.0169 0.0399
5.0 10 0.0152 0.1179 10 0.0155 0.1275 11 0.0156 0.1327

10.0 11 0.0150 0.2305 11 0.0152 0.2416 12 0.0153 0.2468
20.0 13 0.0150 0.4574 12 0.0151 0.4695 13 0.0151 0.4747

0.5 0.1 17 0.1218 0.1561 17 0.1196 0.1691 17 0.1190 0.2018
1.0 18 0.1003 0.3644 18 0.1016 0.4221 18 0.1045 0.4895
5.0 23 0.0910 1.301 22 0.0928 1.415 22 0.0941 1.492

10.0 31 0.0897 2.502 26 0.0909 2.634 25 0.0917 2.713
20.0 34 0.0891 4.923 32 0.0898 5.069 31 0.0903 5.148

0.8 0.1 56 0.5248 2.519 56 0.5192 2.619 54 0.5171 2.873
1.0 62 0.4545 5.003 62 0.4572 5.466 63 0.4646 6.204
5.0 90 0.4245 16.15 90 0.4276 17.00 88 0.4315 17.99

10.0 120 0.4198 30.27 119 0.4217 31.22 115 0.4241 32.27
20.0 167 0.4174 58.61 166 0.4185 59.62 160 0.4198 60.70
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5. Conclusions

One of the main difficulties for computing the stationary distribution of
LDQBD process is to calculate the rate matricesR(n). The number of matrices to

be calculated their inverses (−Q̃
(n)
1 )−1 and (−Q̂

(n)
1 )−1 for R(n), n = 1, 2, · · · ,K

is the same as the truncation level K. As the traffic intensity ρ and mean re-
trial time m1 increase, the truncation level K should be enlarged rapidly for
satisfactory accuracy. Main contribution of this paper is to present an effective

algorithm for (−Q̃
(n)
1 )−1 and (−Q̂

(n)
1 )−1 that computes the c+1 inverses of the

matrices of size n+ 1 instead of the matrix of size (n+ 1)(c+ 1) for computing
R(n). Thus the algorithm presented in this paper can be applied to systems with
high traffic intensity and large mean retrial time.
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