• 제목/요약/키워드: alginate encapsulation

검색결과 58건 처리시간 0.025초

Encapsulation of Bacillus polyfermenticus SCD with Alginate-Methylcellulose and Evaluation of Survival in Artificial Conditions of Large Intestine

  • Kim Cheon-Jei;Jun Song-Ae;Lee Na-Kyoung;Kim Kee-Tae;Lee Si-Kyung;Kim Chang-Han;Paik Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.443-449
    • /
    • 2006
  • Bacillus polyfermenticus SCD was studied for its increasing stability by encapsulation, using 2, 3, and 4% sodium alginate. In these cases, 3% alginate resulted in the maximum survival of B. polyfermenticus SCD in artificial gastric juice for 3 h. Effects of several biopolymers on the encapsulated B. polyfermenticus SCD by 3% sodium alginate were investigated. Encapsulation with 0.5% methylcellulose showed the highest survival rate for 3 h in artificial gastric juice. Therefore, the optimized encapsulation material was 3% alginate with 0.5% methylcellulose. Furthermore, the survival of encapsulated B. polyfermenticus SCD was shown to be 122%, when 1% bile salt was added. Freeze-dried encapsulation resulted in lower survival than with non-dried encapsulation. Therefore, encapsulation was the most effective when 3% sodium alginate was used with 0.5% methylcellulose, but without freeze-drying.

Production and Characterization of Beta-lactoglobulin/Alginate Nanoemulsion Containing Coenzyme Q10: Impact of Heat Treatment and Alginate Concentrate

  • Lee, Mee-Ryung;Choi, Ha-Neul;Ha, Ho-Kyung;Lee, Won-Jae
    • 한국축산식품학회지
    • /
    • 제33권1호
    • /
    • pp.67-74
    • /
    • 2013
  • The aims of this research were to produce oil-in-water ${\beta}$-lactoglobulin/alginate (${\beta}$-lg/Al) nanoemulsions loaded with coenzyme $Q_{10}$ and to investigate the combined effects of heating temperature and alginate concentration on the physicochemical properties and encapsulation efficiency of ${\beta}$-lg/Al nanoemulsions. In ${\beta}$-lg/Al nanoemulsions production, various heating temperatures (60, 65, and $70^{\circ}C$) and alginate concentrations (0, 0.01, 0.03, and 0.05%) were used. A transmission electron microscopy was used to observe morphologies of ${\beta}$-lg/Al nanoemulsions. Droplet size and zeta-potential values of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$ were determined by electrophoretic light scattering spectrophotometer and HPLC, respectively. The spherically shaped ${\beta}$-lg/Al nanoemulsions with the size of 169 to 220 nm were successfully formed. The heat treatments from 60 to $70^{\circ}C$ resulted in a significant (p<0.05) increase in droplet size, polydispersity, zeta-potential value of ${\beta}$-lg/Al nanoemulsions, and encapsulation efficiency of coenzyme $Q_{10}$. As alginate concentration was increased from 0 to 0.05%, there was an increase in the polydispersity index of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$. This study demonstrates that heating temperature and alginate concentration had a major impact on the size, polydispersity, zeta-potential value and encapsulation efficiency of coenzyme $Q_{10}$ in ${\beta}$-lg/Al nanoemulsions.

Optimization of Chitosan-Alginate Encapsulation Process Using Pig Hepatocytes or Development of Bioartificial Liver

  • LEE , JI-HYUN;LEE, DOO-HOON;SON, JEONG-HWA;PARK, JUNG-KEUG;KIM, SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.7-13
    • /
    • 2005
  • Chitosan-alginate capsules were formed by electrostatic interactions and exhibited an appropriate mechanical strength, permeability, and stability for the culture of hepatocytes. Pig hepatocytes were isolated and hepatocyte spheroids formed and immobilized in chitosan-alginate capsules. An encapsulation procedure of 3 min and spheroid formation period of 24 h were the optimum conditions for the best liver functions. Pig hepatocytes with a cell density of $6.0{\tomes}10^6$ cells/ml in the capsules were found to be most suitable for application in a bioartificial liver support system. The encapsulated pig hepatocyte spheroids exhibited stable ammonia removal and urea secretion rates in a bioreactor for 2 weeks. Accordingly, chitosan-alginate encapsulated hepatocyte spheroids in a packed-bed bioreactor would appear to have potential as a bioartificial liver.

Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation

  • Gawad, Ramadan;Fellner, Vivek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.72-81
    • /
    • 2019
  • Objective: To determine the effect of gut pH and rumen microbial fermentation on glycerol encapsulated in alginate and alginate-chitosan polymers. Methods: Glycerol was encapsulated at 2.5%, 5%, 7.5%, or 10% (w/w) with sodium alginate (A) and alginate-chitosan (AC) polymers. Surface morphology and chemical modifications of the beads were evaluated using scanning electron microscopy and Fourier transform infrared (FTIR) spectra. Encapsulation efficiency was determined at the 5% glycerol inclusion level in two experiments. In experiment 1, 0.5 g of alginate-glycerol (AG) and alginate-chitosan glycerol (ACG) beads were incubated for 2 h at $39^{\circ}C$ in pH 2 buffer followed by 24 h in pH 8 buffer to simulate gastric and intestinal conditions, respectively. In experiment 2, 0.5 g of AG and ACG beads were incubated in pH 6 buffer at $39^{\circ}C$ for 8 h to simulate rumen conditions. All incubations were replicated four times. Free glycerol content was determined using a spectrophotometer and used to assess loading capacity and encapsulation efficiency. An in vitro experiment with mixed cultures of rumen microbes was conducted to determine effect of encapsulation on microbial fermentation. Data were analyzed according to a complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Results: For AG and ACG, loading capacity and efficiency were 64.7%, 74.7%, 70.3%, and 78.1%, respectively. Based on the FTIR spectra and scanning electron microscopy, ACG treatment demonstrated more intense and stronger ionic bonds. At pH 6, 36.1% and 29.7% of glycerol was released from AG and ACG, respectively. At pH 2 minimal glycerol was released but pH 8 resulted in 95.7% and 93.9% of glycerol released from AG and ACG, respectively. In vitro microbial data show reduced (p<0.05) fermentation of encapsulated glycerol after 24 h of incubation. Conclusion: The AC polymer provided greater protection in acidic pH with a gradual release of intact glycerol when exposed to an alkaline pH.

저분자 알긴산을 이용한 fish oil의 microencapsulation (Microencapsulation of Fish Oil by Low-molecular Weight Sodium Alginate)

  • 조민;김병용;백무열;임종환
    • 한국식품과학회지
    • /
    • 제37권5호
    • /
    • pp.730-735
    • /
    • 2005
  • 정제어유의 산패에 영향을 줄 수 있는 요인을 피하기 위해 유화법을 이용한 알긴산 캡슐을 제조하고 캡슐을 구성하는 염화칼슘. 알긴산, 정제어유 그리고 유화제의 농도 그리고 피복물질로서의 저분자 알긴산이 캡슐의 수율에 미치는 특성을 살펴보았다. 염화칼슘 농도에 따른 캡슐의 수율은 0.5%까지는 증가하지만 그 이상의 농도에서는 변화가 없었고, 알긴산 농도는 1.25%까지 수율이 다소 증가하는 경향을 보였지만 1.5%에서 감소하였다. 내부물질의 함량이 증가할수록 캡슐의 봉입율도 높아졌고, 0.25-1.0%의 유화제 농도에서는 94%의 수율로 일정하게 관찰되었다. 이상의 결과로 가장 높은 수율을 얻기 위한 유화 캡슐화 공정의 적절한 조건을 염화칼슘: 0.5%, 알긴산: 1.25%, 내부물질: 0.75%, 유화제: 0.75%로 결정할 수 있었다. 또한 감마선에 의해 저분자화 된 알긴산을 피복물질로서 캡슐공정에 적용하였을 경우 캡슐의 수율 변화가 거의 없어 고분자 알긴산을 대체할 수 있는 가능성을 확인하였다.

Evaluation of Bacillus velezensis for Biological Control of Rhizoctonia solani in Bean by Alginate/Gelatin Encapsulation Supplemented with Nanoparticles

  • Moradi-Pour, Mojde;Saberi-Riseh, Roohallah;Esmaeilzadeh-Salestani, Keyvan;Mohammadinejad, Reza;Loit, Evelin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1373-1382
    • /
    • 2021
  • Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.

벼 체세포배를 알긴산 캡슐에 넣어 제작한 건조형 인공종자 (Production of Dry-Type Artificial Seeds Using Alginate-Encapsulated Rice Somatic Embryos)

  • 정원중;민성란;송남희;유장렬
    • 식물조직배양학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 1995
  • 벼의 인공종자를 무균상에서 건조시킴으로써 건조형 인공종자를 제조하였다. 1/2 MS배지에서 80%의 수분 손실률을 가진 인공종자는 20%가 발아하였다. 0.1 mg/L ABA가 첨가된 알긴산용액으로 제조한 인공종자는 0-90%의 수분손실률에서 최고 1.7배까지 발아율이 향상되었다. 이러한 결과는 ABA가 인공종자의 제조 및 건조과정에서 물리적 혹은 생리적인 저해에 대한 보호기능을 나타낸 것으로 사료된다.

  • PDF

생균력 증진을 위한 농업용 미생물제 미세캡슐화 (Encapsulation of Agro-Probiotics for Promoting Viable Cell Activity)

  • 최소영;윤민호;황경숙
    • 한국토양비료학회지
    • /
    • 제38권5호
    • /
    • pp.287-293
    • /
    • 2005
  • 본 연구에서는 농업용 미생물제 수요의 증가에 따른 보다 안정한 미생물제 공급과 규격화된 품질 보증 및 미생물제 생산성 확대를 위하여 식품 산업에서 활용되고 있는 미생물제의 미세캡슐화 기술을 응용하여, 농업용 미생물제 캡슐화 소재선발 및 캡슐화 최적조건을 조사하고 생산된 미생물 캡슐제의 생균력과 안정성에 관하여 검토하였다. 본 실험의 캡슐화 장치는 extrusion 기법에서 주로 사용되고 있는 air atomizing device 대신 저속의 연동펌프를 이용한 micro-nozzle 방식을 설계하여 수행하였다. 농용 미생물의 캡슐화 소재선발을 위해 bead 형성이 용이하며 생균력을 안정적으로 유지할 수 있고 저렴한 비용으로 구입이 가능한 캡슐제를 조사한 결과 Na-alginate와 K-carragenan은 bead 형성이 우수하게 나타났으며 캡슐내 생균수는 $5.3-7.4{\times}10^7cfu\;g^{-1}$로 gellan gum과 locust bean gum 등에 비하여 6배 이상 높은 생균수를 나타냈다. Na-alginate의 경우 캡슐이 매우 단단하고 매끄러웠으며, K-carragenan보다 7배 이상 저렴한 것으로 조사되었다. 이상 농업용 미생물제의 캡슐화 소재로서 Na-alginate를 사용하는 것이 가장 효율적이고 경제적이라 판단되었다. 농업용 미생물제의 캡슐화를 위한 최적의 캡슐화 소재로 1.5% 농도의 Na-alginate에 1.0% starch와 같은 안정제를 혼합하여 사용할 경우 생균력을 유지하는 데 보다 안정적이었다. 최적조건에서 형성된 캡슐의 형태를 관찰한 결과 캡슐의 표면구조는 매끈하고 규칙 바른 구형을 나타내었으며, 내부 구조는 비교적 균일한 polymatrix를 형성하였 으며 부분적으로 큰 공극을 형성하였다. 미세 캡슐 내 미생물 생존력을 유지하기 위한 캡슐막의 효과를 나타낼 수 있는 안정제로 저렴한 가격으로 구입이 용이한 starch와 zeolite를 이용하여 생균력 증진효과를 검토하였다. 세균을 이용한 미생물 캡슐체의 경우 starch와 zeolite 모두 약 70-80% 생균력을 나타내었으며, 효모의 경우 starch를 안정제로 이용한 경우 67%의 생균력을 나타내었으나 zeolite를 안정제로 첨가한 경우 80% 이상의 높은 생균력 증진을 나타내었다. 이상의 결과로부터 미생물을 캡슐화 할 경우 무기재료인 zeolite를 첨가할 경우 장기간 생균력 안정성이 유지되는 것으로 나타났다.

Effect of Collagen Concentration on the Viability and Metabolic Function of Encapsulated Hepatocytes

  • Kim, Sung-Koo;Yu, Sun-Hee;Lee, Ji-Hyun;Axel Racemacher;Lee, Doo-Hoon;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.423-427
    • /
    • 2001
  • Chitosan/alginate capsules were formed by electrostatic interactions and had appropriated mechanical strength, permeability to albumin, and stability to hepatocytes. Rat hepatocytes were isolated and immobilized in chitosan/alginate capsules. During the encapsulation process with hepatocyte, 10% of viability was decreased mainly due to the low pH of the chitosan solution. Among various capsule fabrication methods, the chitosan-alginate capsule showed the highest mechanical strength. Addition of collagen in the capsule with hepatocytes enhanced hepatic metabolism as well as the cell viability for 2 weeks of culture. The hepatocyte in the capsule without collagen decreased the viability to 10% for 2-week cultures.

  • PDF

알지네이트를 이용한 셀룰로오스 하이드로겔의 투과 특성 제어 (Permeability Control of Cellulose Hydrogel Membrane Using Alginate)

  • 정은수;신성철;박민성;현진호
    • 펄프종이기술
    • /
    • 제47권2호
    • /
    • pp.17-23
    • /
    • 2015
  • Natural cellulose hydrogel membrane cannot be directly used for cell encapsulation because it has many large pores on the surface that immune biomolecules are able to penetrate into easily. For the reason, alginate was used for the control of pore size of the cellulose hydrogel membrane. The surface morphology of cellulose/alginate nanocomposite confirmed the successful control of the porosity of the membrane. The permeability of the cellulose/alginate nanocomposite was decreased but mechanical properties were increased compared with the bacterial cellulose membrane. The cellulose/alginate nanocomposite could be used for the functional membrane as a promising biomedical material in the future.