Browse > Article
http://dx.doi.org/10.7584/ktappi.2015.47.2.017

Permeability Control of Cellulose Hydrogel Membrane Using Alginate  

Jeong, Eunsue (Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University)
Shin, Sungchul (Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University)
Park, Minsung (Department of Biosystems and Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University)
Hyun, Jinho (Center for Food and Bioconvergence, Seoul National University)
Publication Information
Journal of Korea Technical Association of The Pulp and Paper Industry / v.47, no.2, 2015 , pp. 17-23 More about this Journal
Abstract
Natural cellulose hydrogel membrane cannot be directly used for cell encapsulation because it has many large pores on the surface that immune biomolecules are able to penetrate into easily. For the reason, alginate was used for the control of pore size of the cellulose hydrogel membrane. The surface morphology of cellulose/alginate nanocomposite confirmed the successful control of the porosity of the membrane. The permeability of the cellulose/alginate nanocomposite was decreased but mechanical properties were increased compared with the bacterial cellulose membrane. The cellulose/alginate nanocomposite could be used for the functional membrane as a promising biomedical material in the future.
Keywords
Cellulose hydrogel; Alginate; Nanocomposite; Cell encapsulation; Permeability; Porosity control; Mechanical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin, C.C. and Anseth, K. S., Cell-cel communication mimicry with poly(ethylene glycol) hydrogels for enhancing $\beta$-cell function, PNAS, 108(16):6380-6385 (2011).   DOI
2 Goh, C. H., Heng, P. W. S. and Chan, L. W., Alginate as a useful naturalpolymer for microencapsulation and therapeutic applications, Carbohydrate Polymers, 88:1-12 (2012).   DOI
3 Hall, K. K., Gattas-Asfura, K. M. and Stabler, C. L., Microencapsulation of islets within alginate/poly (ethylene glycol) gels cross-linked via Staudinger ligation, Acta biomaterialia, 7(2):614-624 (2011).   DOI
4 Tan, W. H. and Takeuchi, S., Monodisperse alginate hydrogel microbeads for cell encapsulation, Advanced Materials, 19(18):2696-2701 (2007).   DOI
5 Jafar Mazumder, M. A., Burke, N. A., Shen, F., Potter, M. A. and Stover, H. D., Core-cross-linked alginate microencapsules for cell encapsulation, Biomacromolecules, 10(6):1365-1373 (2009).   DOI
6 Zhang, W., Zhao, S., Rao, W., Snyder, J., Choi, J. K., Wang, J., Khan, I. A., Saleh, N. B., Mohler, P. J., Yu, J., Hund, T. J., Tang, C., and He, X., A novel core-shell microcapsule for encapsulation and 3D culture for embryonic stem cells, Journal of materials chemistry B, 7:1002-1009 (2013).
7 Sokolnicki, A. M., Fisher, R. J., Harrah, T. P. and Kaplan, D. L., Permeability of bacterial cellulose membranes, Journal of membrane science, 272(1-2): 15-27 (2006).   DOI
8 Li, Y., Qing, S., Zhou, J. and Yang, G., Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials, Carbohydrate polymers, 103:496-501 (2014).   DOI
9 Zaborowaska, M., Bodin, A., Backdahl, H., Popp, J., Goldstein, A. and Gatenholm, P., Microporous bacterial cellulose as a potential scaffold for bone regeneration, Acta biomaterialia, 6(7):2540-2547 (2010).   DOI
10 Yang, C., Gao, C., Wan, Y., Tang, T., Zhang, S. and Dai, K., Preparation and characteriazation of three-dimensional nanostructured macroporous bacterial cellulose/ agarose scaffold for tissue engineering, Journal of porous materials, 18(5):545-552 (2011).   DOI
11 Gao, C., Wan, Y., Yang, C., Dai, K., Tang, T., Luo, H. and Wang, J., Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold, Journal of porous materials, 18(2):139-145 (2011).   DOI
12 Kang, A., Park, J., Jeong, G. S. and Lee, S. H., Cell encapsulation via microtechnologies, Biomaterials, 35(9): 2651-2663 (2014).   DOI