DOI QR코드

DOI QR Code

Production and Characterization of Beta-lactoglobulin/Alginate Nanoemulsion Containing Coenzyme Q10: Impact of Heat Treatment and Alginate Concentrate

  • Lee, Mee-Ryung (Department of Food and Nutrition, Daegu University) ;
  • Choi, Ha-Neul (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ha, Ho-Kyung (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Won-Jae (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2012.11.09
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

The aims of this research were to produce oil-in-water ${\beta}$-lactoglobulin/alginate (${\beta}$-lg/Al) nanoemulsions loaded with coenzyme $Q_{10}$ and to investigate the combined effects of heating temperature and alginate concentration on the physicochemical properties and encapsulation efficiency of ${\beta}$-lg/Al nanoemulsions. In ${\beta}$-lg/Al nanoemulsions production, various heating temperatures (60, 65, and $70^{\circ}C$) and alginate concentrations (0, 0.01, 0.03, and 0.05%) were used. A transmission electron microscopy was used to observe morphologies of ${\beta}$-lg/Al nanoemulsions. Droplet size and zeta-potential values of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$ were determined by electrophoretic light scattering spectrophotometer and HPLC, respectively. The spherically shaped ${\beta}$-lg/Al nanoemulsions with the size of 169 to 220 nm were successfully formed. The heat treatments from 60 to $70^{\circ}C$ resulted in a significant (p<0.05) increase in droplet size, polydispersity, zeta-potential value of ${\beta}$-lg/Al nanoemulsions, and encapsulation efficiency of coenzyme $Q_{10}$. As alginate concentration was increased from 0 to 0.05%, there was an increase in the polydispersity index of ${\beta}$-lg/Al nanoemulsions and encapsulation efficiency of coenzyme $Q_{10}$. This study demonstrates that heating temperature and alginate concentration had a major impact on the size, polydispersity, zeta-potential value and encapsulation efficiency of coenzyme $Q_{10}$ in ${\beta}$-lg/Al nanoemulsions.

Keywords

References

  1. Balakrishnan, P., Lee, B. J., Oh, D. H., Kim, J. O., Lee, Y. I., Kim, D. D., Jee, J. P., Lee, Y. B., Woo, J. S., Yong, C. S., and Choi, H.G. (2009) Enhanced oral bioavailability of Coenzyme $Q_{10}$ by self-emulsifying drug delivery systems. Int. J. Pharm. 374, 66-72. https://doi.org/10.1016/j.ijpharm.2009.03.008
  2. Barbut, S. and Foegeding, E. A. (1993) $Ca^{2+}$-induced gelation of pre-heated whey protein isolate. Food Sci. 58, 867-871. https://doi.org/10.1111/j.1365-2621.1993.tb09379.x
  3. Beaulieu, L., Savoie, L., Paquin, P., and Subirade, M. (2002) Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: Application for the protection of retinol. Biomacromolecule. 3, 239-248. https://doi.org/10.1021/bm010082z
  4. Bouchemal, K., Briancon, S., Perrier, E., and Fessi, H. (2004) Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int. J. Pharm. 280, 241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016
  5. Chen, L., Remondetto, G. E., and Subirade, M. (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17, 272-283. https://doi.org/10.1016/j.tifs.2005.12.011
  6. Chen, L. and Subirade, M. (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27, 4646-4654. https://doi.org/10.1016/j.biomaterials.2006.04.037
  7. Crane, F. L. (2001) Biochemical functions of coenzyme $Q_{10}$. J. Am. Coll. Nutr. 20, 591-598. https://doi.org/10.1080/07315724.2001.10719063
  8. Damodaran, S. (1996) Amino acids, peptides and proteins. In: Food chemistry. Fennema, O. R. (3rd ed) Marcel Dekker, Inc., NY, pp. 321-429.
  9. Dannenberg, F. and Kessler, H. G. (1988) Effect of denaturation of $\beta$-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis. Milchwissenschaft 43, 632-635.
  10. Dragicevic-Curic, N., Grafe, S., Gitter, B., Winter, S., and Fahr, A. (2010) Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Int. J. Pharm. 384, 100-108. https://doi.org/10.1016/j.ijpharm.2009.10.006
  11. Euston, S. R., Finnigan, S. R., and Hirst, R. L. (2000) Aggregation kinetics of heated whey protein-stabilized emulsions. Food Hydrocolloid. 14, 155-161. https://doi.org/10.1016/S0268-005X(99)00061-2
  12. George, M. and Abraham, T. E. (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review. J. Control. Release 114, 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017
  13. Harnsilawat, T., Pongsawatmanit, R., and McClements, D. J. (2006) Characterization of $\beta$-lactoglobulin-sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloid. 20, 577-585. https://doi.org/10.1016/j.foodhyd.2005.05.005
  14. Hongsprabhas, P. and Barbut, S. (1997) Protein and salt effects on $Ca^{2+}$-induced cold gelation of whey protein isolate. J. Food Sci. 62, 382-385. https://doi.org/10.1111/j.1365-2621.1997.tb04006.x
  15. Ishihara, T. and Mizushima, T. (2010) Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/nanoparticles. Expert Opin. Drug Del. 7, 565-575. https://doi.org/10.1517/17425241003713486
  16. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J. N., Azemar, and Solans, C. (2002) Formation and stability of nano emulsions prepared using the phase inversion temperature method. Langmuir 18, 26-30. https://doi.org/10.1021/la010808c
  17. Keowmaneechai, E. and McClements, D. J. (2006) Influence of EDTA and citrate on thermal stability of whey protein stabilized oil-in-water emulsions containing calcium chloride. Food Res. Int. 39, 230-239. https://doi.org/10.1016/j.foodres.2005.07.010
  18. Kwon, S. S., Nam, Y. S., Lee, J. S., Ku, B. S., Han, S. H., Lee, J. Y., and Chang, I. S. (2002) Preparation and characterization of coenzyme $Q_{10}$-loaded PMMA nanoparticles by a new emulsification process based on microfluidization. Coll. Surf. A: physicochem. eng. Aspects. 210, 95-104. https://doi.org/10.1016/S0927-7757(02)00212-1
  19. Lee, M. R., Nam, G. W., Choi, H. N., Yun, H. S., Kin, S. H., You, S. K., Park, D. J., and Lee W. J. (2008) Structure and chemical properties of beta-lactoglobulin nanoparticles. J. Agric. Life Sci. 42, 31-36.
  20. Liang, L., Tajmir-Riahi, H. A., and Subirade, M. (2008) Interaction of $\beta$-lactoglobulin with resveratrol and its biological implications. Biomacromolecule. 9, 50-56. https://doi.org/10.1021/bm700728k
  21. Line, V. L. S., Remondetto, G. E., and Subirade, M. (2005) Cold gelation of $\beta$-lactoglobulin oil-in-water emulsions. Food Hydrocolloid. 19, 269-278. https://doi.org/10.1016/j.foodhyd.2004.06.004
  22. Livney, Y. D. (2010) Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15, 73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  23. McClements, D. J., Decker, E. A., and Weiss, J. (2007) Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72, R109-R124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
  24. Monahan, F. J., German, J. B., and Kinsella, J. E. (1995) Effect of pH and temperature on protein unfolding and thiol/ disulfide interchange reactions during heat-induced gelation of whey proteins. J. Agric. Food Chem. 43, 46-52. https://doi.org/10.1021/jf00049a010
  25. Moro, A., Gatti, C., and Delorenzi, N. (2001) Hydrophobicity of whey protein concentrates measured by fluorescence quenching and its relation with surface functional properties. J. Agric. Food Chem. 49, 4784-4789. https://doi.org/10.1021/jf001132e
  26. Raikos, V. (2010) Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloid. 24, 259-265. https://doi.org/10.1016/j.foodhyd.2009.10.014
  27. Ron, N., Zimet, P., Bargarum, J., and Livney, Y. D. (2010) Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 20, 686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
  28. Schmitt, C., Bovay, C., Vuilliomenet, A. M., Rouvet, M., Bovetto, L., Barbar, R., and Sanchez, C. (2009) Multiscale characterization of individualized $\beta$-lactoglobulin mcirogels formed upon heat treatment under narrow pH range conditions. Langmuir 25, 7899-7909. https://doi.org/10.1021/la900501n
  29. Schmidt, R. H., Packard, V. S., and Morris, H. A. (1984) Effect of processing on whey protein functionality. J. Dairy Sci. 67, 2723-2733. https://doi.org/10.3168/jds.S0022-0302(84)81630-6
  30. Solans, C., Izguierdo, P., and Nolla, J. (2005) Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10, 102-110. https://doi.org/10.1016/j.cocis.2005.06.004
  31. Whistler, R. L. and BeMiller, J. N. (1997) Alginates. In: Carbohydrate chemistry for food scientists. Eagan press, MN, pp. 195-202.
  32. Xia, F., Jin, H., Zhao, Y., and Guo, X. (2012) Preparation of coenzyme $Q_{10}$ liposomes using supercritical anti-solvent technique. J. Microencapsul. 29, 21-29. https://doi.org/10.3109/02652048.2011.629742
  33. Xia, S., Xu, S, and Zhang, X. (2006) Optimization in the preparation of Coenzyme $Q_{10}$ nanoliposomes. J. Agric. Food Chem. 54, 6358-6366. https://doi.org/10.1021/jf060405o
  34. Yen, F. L., Wu, T. H., Tzeng, C. W., Lin, L. T., and Lin, C. C. (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem. 58, 7376-7382. https://doi.org/10.1021/jf100135h
  35. Yoo, S. H., Song, Y. B., Chang, P. S., and Lee, H. G. (2006) Microencapsulation of $\alpha$-tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 38, 25-30. https://doi.org/10.1016/j.ijbiomac.2005.12.013
  36. Zimet, P. and Livney, Y. D. (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for $\omega$-3 polyunsaturated fatty acids. Food Hydrocolloid. 23, 1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008

Cited by

  1. β-lactoglobulin stabilized nanemulsions—Formulation and process factors affecting droplet size and nanoemulsion stability vol.500, pp.1-2, 2016, https://doi.org/10.1016/j.ijpharm.2016.01.035
  2. Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex vol.36, pp.2, 2016, https://doi.org/10.5851/kosfa.2016.36.2.267
  3. Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge vol.28, pp.3, 2015, https://doi.org/10.5713/ajas.14.0761
  4. Physicochemical Property and Oxidative Stability of Whey Protein Concentrate Multiple Nanoemulsion Containing Fish Oil vol.82, pp.2, 2017, https://doi.org/10.1111/1750-3841.13591
  5. Manufacture and Characterization of Water-in-oil-in-water (W1/O/W2) Nano Multiple Emulsion Prepared with Whey Protein Concentrate vol.48, pp.6, 2014, https://doi.org/10.14397/jals.2014.48.6.301
  6. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells vol.101, pp.1, 2018, https://doi.org/10.3168/jds.2017-13119
  7. Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q10 vol.38, pp.6, 2018, https://doi.org/10.5851/kosfa.2018.e65
  8. Comparison of dry- and wet-heat induced changes in physicochemical properties of whey protein in absence or presence of inulin pp.2092-6456, 2019, https://doi.org/10.1007/s10068-019-00577-w
  9. Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles vol.37, pp.1, 2013, https://doi.org/10.5851/kosfa.2017.37.1.123
  10. 산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구 vol.35, pp.3, 2013, https://doi.org/10.22424/jmsb.2017.35.3.208
  11. 식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰 vol.36, pp.4, 2013, https://doi.org/10.22424/jmsb.2018.36.4.187
  12. Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol vol.39, pp.5, 2013, https://doi.org/10.5851/kosfa.2019.e74
  13. Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review vol.24, pp.18, 2013, https://doi.org/10.3390/molecules24183254
  14. Milk Protein-Stabilized Emulsion Delivery System and Its Application to Foods vol.38, pp.4, 2013, https://doi.org/10.22424/jdsb.2020.38.4.189
  15. 케이신 포스포펩티드/키토올리고당 나노 복합체의 유식품 적용 연구 vol.39, pp.1, 2013, https://doi.org/10.22424/jdsb.2021.39.1.27