Browse > Article
http://dx.doi.org/10.4014/jmb.2105.05001

Evaluation of Bacillus velezensis for Biological Control of Rhizoctonia solani in Bean by Alginate/Gelatin Encapsulation Supplemented with Nanoparticles  

Moradi-Pour, Mojde (Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan)
Saberi-Riseh, Roohallah (Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan)
Esmaeilzadeh-Salestani, Keyvan (Chair of Crop Science and Plant Biology, Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences)
Mohammadinejad, Reza (Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences)
Loit, Evelin (Chair of Crop Science and Plant Biology, Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1373-1382 More about this Journal
Abstract
Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.
Keywords
Alginate/Gelatin; biological control; encapsulation; carbon nano tube; microbiology; PGPR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D. 2011. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 31: 211-226.   DOI
2 Vemmer M, Patel AV. 2013. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control. 67: 380-389.   DOI
3 Gagne-Bourque F, Xu M, Dumont MJ, Jabaji S. 2015. Pea protein alginate encapsulated Bacillus subtilis B26, a plant biostimulant, provides controlled release and increased storage survival. J. Fertil. Pestic. 6: 157.
4 Yao-jing W, Ming-da L, Dong L. 2009. Effects of silicon enrichment on photosynthetic characteristics and yield of Strawberry. Chinese Acad. Agric. Sci. 12: 92-93.
5 Bharti N, Sharma SK, Saini S, Verma A, Nimonkar Y, Prakash O. 2017. Microbial plant probiotics: problems in application and formulation, In Kumar V, Kumar M, Sharma S, Prasad R (Eds.), pp. 317-335. Probiotics and Plant Health. Springer, Singapore.
6 Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, et al. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121: 102-117.   DOI
7 Lobo CB, Ju'arez Tomas MS, Viruel E, Ferrero MA, Lucca ME. 2018. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 219: 12-25.   DOI
8 Saberi-riseh R, Moradi-Pour M. 2020. The effect of Bacillus subtilis Vru1 encapsulated in alginate - bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 152: 1089-1097.   DOI
9 Monica RC, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia. 62: 161-165.   DOI
10 Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S. 2020. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biol. Control 152: 104444.   DOI
11 Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220.   DOI
12 Haghighi M, da Silva JAT. 2014. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop Sci. Biotechnol. 17: 201-208.   DOI
13 Saberi-Rise R, Moradi-Pour, M. 2020. The effect of Bacillus subtilis Vru1 encapsulated in alginate-bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 152: 1089-1097.   DOI
14 Keel C, Weller DM, Natsch A, Defago G, Cook RJ, Thomashow LS. 1996. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas isolates from diverse geographic locations. Appl. Environ. Microbiol. 62: 552-563.   DOI
15 Arora NK, Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3Biotech 7: 381.
16 Toharisman A, Suhartono MT, Spindler-Barth M, Hwang JK, Pyun YR. 2005. Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World J. Microbiol. Biotechnol. 21: 733-738.   DOI
17 Ab Rahmana SFS, Singha E, Pieterseb CMJ, Schenk PM. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. J. 267: 102-111.   DOI
18 Bao-shan L, shao-qi D, Chun-hui L, Li-jun F, Shu-chun Q, Min Y. 2004. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai Larch seedlings. J. For. Res. 15: 138-140.   DOI
19 Manzer H, Siddiqui M, Al-Whaibi H, Firoz M, Al-Khaishany MY. 2015. Role of nanoparticles in plants. Nanotechnol. Plant Sci. 2015: 19-35.
20 Torney F, Trewyn BG, Lin VSY, Wang K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2: 295-300.   DOI
21 Tu L, He Y, Yang H, Wu Z, Yi L. 2015. Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed. 26: 735-749.   DOI
22 Wu Z, Guo L, Qin S, Li C. 2012. Encapsulation of R. planticola Rs-2 from alginate-starch bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 39: 317-327.   DOI
23 Szybalski W, Bryson V. 1952. Genetic studies on microbial cross resistance to toxic agents i.: cross resistance of Escherichia coli to fifteen antibiotics1, 2. J. Bacteriol. 64: 489-499.   DOI
24 Nelson B, Helms T, Christiianson T, Kural I. 1996. Characterization and pathogenicity of Rhizoctonia from soybean. Plant Dis. 80: 74-80.   DOI
25 Veliz EA, Martinez-Hidalgo P, Hirsch AM. 2017. Chitinase producing bacteria and their role in biocontrol. AIMS Microbiol. 3: 689-705.   DOI
26 Venturi V, Keel C. 2016. Signaling in the rhizosphere. Trends Plant Sci. 21: 187-198.   DOI
27 Sivasakthi S, Kanchana D, Usharani G, Saranraj P. 2013. Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of cuddalore district, Tamil Nadu, India. Int. J. Microbiol. Res. 4: 227-233.   DOI
28 Berg G, Krechel A, Ditz M, Richard A, Ulrich SA, Hallmann J. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51: 215-229.   DOI
29 Gowtham HG, Duraivadivel P, Hariprasad P, Niranjana SR. 2017. A novel split-pot bioassay to screen indole acetic acid producing rhizobacteria for the improvement of plant growth in tomato [Solanum lycopersicum L.]. Sci Hortic. 224: 351-357.   DOI
30 Bari LM, Rakan AH, Faeza NT. 2019. Biological control of Fusarium wilt in tomato by entophytic rhizobacteria. Energy Procedia 157: 171-179.   DOI
31 Novo LA, Castro PM, Alvarenga P, da Silva EF. 2018. Plant growth-promoting rhizobacteria-assisted phytoremediation of mine soils, In Prasad MNV, de Campos Favas PJ, Maiti SK (Eds.), pp. 281-295. Bio-geotechnologies for mine site rehabilitation. Elsevier Inc., Amsterdam.
32 Moradi Pour M, Saberi-Riseh R, Mohammadinejad R, Hosseini A. 2019. Investigating the formulation of alginate- gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int. J. Biol. Macromol. 133: 603-613.   DOI
33 Thu HE, Ng SF. 2013. Gelatine enhances drug dispersion in alginate bilayer film via the formation of crystalline microaggregates. Int. J. Pharm. 454: 99-106.   DOI
34 Morla S, Ramachandra Rao CSV, Chakrapani R. 2011. Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. ACS Chem. Bio. Physiol. 1: 328-334.
35 Rajeshkumar S, Malarkodi C. 2014. In vitro antibacterial activity and mechanism of silver nanoparticles against food borne pathogens. Bioinorganic Chemistry and Applications. 10.
36 Shi F, Yin Z, Jiang H, Fan B. 2014. Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion. Acta Microbiol. Sin. 54: 1333-1343.
37 Nallathambi G, Ramachandran T, Rajendran V, Palanivelu R. 2011. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Mater. Res. 14: 552-559.   DOI
38 Salalha W, Kuhn J, Dror Y, Zussman E. 2006. Encapsulation of bacteria and viruses in electrospun nanofibers. Nanotechnology 17: 4675-4681.   DOI
39 Cray JA, Connor MC, Stevenson A, Jonathan DR, Houghton Drauzio EN, Rangel Louise R, et al. 2016. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions. Microb. Biotechnol. 9: 330-354.   DOI
40 Vejan P, Khadiran T, Abdullah R, Ismail S, Dadrasnia A. 2019. Encapsulation of plant growth promoting Rhizobacteria-prospects and potential in agricultural sector: a review. J. Plant Nutr. 42: 2600-2623.   DOI
41 Tripathi S, Sarkar S. 2014. Influence of water-soluble carbon dots on the growth of wheat plant. Appl. Nanosci. 5: 609-616.   DOI
42 Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3: 3221-3227.   DOI
43 Son HJ, Park GT, Cha MS, Heo MS. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour. Technol. 97: 204-210.   DOI
44 Tiwari DK, Dasgupta-Schubert N, Villasenor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-Garcia SE. 2014. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea Mays) and implications for nano agriculture. Appl. Nanosci. 4: 577-591.   DOI
45 Phadke KV, Manjeshwar LS, Aminabhavi TM. 2014. Biodegradable polymeric microspheres of gelatin and carboxymethyl guar gum for controlled release of theophylline. Polym. Bull. 71: 1625-1643.   DOI
46 Kermani SA, Hokmabadi H. Jahromi MG. 2017. The evaluation of the effect of multiwall carbon nano tube (MWCNT) on in vitro proliferation and shoot tip necrosis of pistachio rootstock UCB-1 (Pistacia integrima× P. atlantica). J. Nuts 8: 49-59.
47 Locatelli GO, dos Santos GF, Botelho PS, Finkler CLL, Bueno LA. 2018. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biol. Control. 117: 21-29.   DOI
48 Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. 2010. Nanoparticulate material delivery to plants. Plant Sci. J. 179: 154-163.   DOI
49 Begum P, Fugetsu B. 2012. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J. Hazard. Mater. 243: 212-222.   DOI
50 Nakkeeran S, Dilantha Fernando WG, Siddiqui ZA. 2005. Plant growth promoting rhizobacteria formulation and its scope in commercialization for the management of pest and disease. ZA, Siddiqui (Ed.), pp. 257-296. PGPR: Biocontrol and Biofertilization. Springer.
51 Van Elsas J, Trevors J, Jain D, Wolters A, Heijnen C, Van L. 1992. Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into the soil. Biol. Fertil. Soils. 14: 14-22.   DOI
52 Ben Khedher S, Kilani-Feki O, Dammakn M, Jabnoun-Khiareddine H, Daami- Remadi M, Tounsi S. 2015. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. C R Biol. 338: 784-792.   DOI
53 Moradi Pour M, Saberi-Riseh R, Mohammadinejad R, Hosseini A. 2019. Nano-encapsulation of plant growth-promoting rhizobacteria and their metabolites using alginate-silica nanoparticles and carbon nanotube improves UCB11 pistachio micropropagation. J. Microbiol. Biotechnol. 29: 1096-1103.   DOI
54 Chen ML, Oh WC. 2011. Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution. Nanoscale Res. Lett. 6: 398.   DOI