• Title/Summary/Keyword: algebraic structures

Search Result 158, Processing Time 0.025 seconds

CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES

  • Campion, Maria Jesus;Candeal, Juan Carlos;Indurain, Esteban;Mehta, Ghanshyam Bhagvandas
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.449-473
    • /
    • 2012
  • In the present paper, we study the relationship between continuous order-representability and the fulfillment of the usual covering properties on topological spaces. We also consider the case of some algebraic structures providing an application of our results to the social choice theory context.

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.

Algebraic Kripke-style Semantics for Three-valued Paraconsistent Logic (3치 초일관 논리를 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.17 no.3
    • /
    • pp.441-461
    • /
    • 2014
  • This paper deals with one sort of Kripke-style semantics for three-valued paraconsistent logic: algebraic Kripke-style semantics. We first introduce two three-valued systems, define their corresponding algebraic structures, and give algebraic completeness results for them. Next, we introduce algebraic Kripke-style semantics for them, and then connect them with algebraic semantics.

  • PDF

A study on the teaching of algebraic structures in school algebra (학교수학에서의 대수적 구조 지도에 대한 소고)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.367-382
    • /
    • 2005
  • In this paper, we deal with various contents relating to the group concept in school mathematics and teaching of algebraic structures indirectly by combining these contents. First, we consider structure of knowledge based on Bruner, and apply these discussions to the teaching of algebraic structure in school algebra. As a result of these analysis, we can verify that the essence of algebraic structure is group concept. So we investigate the previous researches about group concept: Piaget, Freudenthal, Dubinsky. In our school, the contents relating to the group concept have been taught from elementary level indirectly. Tn elementary school, the commutative law and associative law is implicitly taught in the number contexts. And in middle school, various linear equations are taught by the properties of equality which include group concept. But these algebraic contents is not related to the high school. Though we deal with identity and inverse in the binary operations in high school mathematics, we don't relate this algebraic topics with the previous learned contents. In this paper, we discussed algebraic structure focusing to the group concept to obtain a connectivity among school algebra. In conclusion, the group concept can take role in relating these algebraic contents and teaching the algebraic structures in school algebra.

  • PDF

Algebraic Kripke-style semantics for weakening-free fuzzy logics (약화없는 퍼지 논리를 위한 대수적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.17 no.1
    • /
    • pp.181-196
    • /
    • 2014
  • This paper deals with Kripke-style semantics for fuzzy logics. More exactly, I introduce algebraic Kripke-style semantics for some weakening-free extensions of the uninorm based fuzzy logic UL. For this, first, I introduce several weakening-free extensions of UL, define their corresponding algebraic structures, and give algebraic completeness. Next, I introduce several algebraic Kripke-style semantics for those systems, and connect these semantics with algebraic semantics.

  • PDF

Meromorphic functions, divisors, and proective curves: an introductory survey

  • Yang, Ko-Choon
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.569-608
    • /
    • 1994
  • The subject matter of this survey has to do with holomorphic maps from a compact Riemann surface to projective space, which are also called algebrac curves; the theory we survey lies at the crossroads of function theory, projective geometry, and commutative algebra (although we should mention that the present survey de-emphasizes the algebraic aspect). Algebraic curves have been vigorously and continuously investigated since the time of Riemann. The reasons for the preoccupation with algebraic curves amongst mathematicians perhaps have to do with-other than the usual usual reason, namely, the herd mentality prompting us to follow the leads of a few great pioneering methematicians in the field-the fact that algebraic curves possess a certain simple unity together with a rich and complex structure. From a differential-topological standpoint algebraic curves are quite simple as they are neatly parameterized by a single discrete invariant, the genus. Even the possible complex structures of a fixed genus curve afford a fairly complete description. Yet there are a multitude of diverse perspectives (algebraic, function theoretic, and geometric) often coalescing to yield a spectacular result.

  • PDF

R, fuzzy R, and Algebraic Kripke-style Semantics

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.15 no.2
    • /
    • pp.207-222
    • /
    • 2012
  • This paper deals with Kripke-style semantics for FR, a fuzzy version of R of Relevance. For this, first, we introduce FR, define the corresponding algebraic structures FR-algebras, and give algebraic completeness results for it. We next introduce an algebraic Kripke-style semantics for FR, and connect it with algebraic semantics. We furthermore show that such semantics does not work for R.

  • PDF

LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS

  • Ceniceros, Jose;Elhamdadi, Mohamed;Nelson, Sam
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.623-639
    • /
    • 2021
  • We define a new algebraic structure called Legendrian racks or racks with Legendrian structure, motivated by the front-projection Reidemeister moves for Legendrian knots. We provide examples of Legendrian racks and use these algebraic structures to define invariants of Legendrian knots with explicit computational examples. We classify Legendrian structures on racks with 3 and 4 elements. We use Legendrian racks to distinguish certain Legendrian knots which are equivalent as smooth knots.

Ternary Distributive Structures and Quandles

  • Elhamdadi, Mohamed;Green, Matthew;Makhlouf, Abdenacer
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • We introduce a notion of ternary distributive algebraic structure, give examples, and relate it to the notion of a quandle. Classification is given for low order structures of this type. Constructions of such structures from 3-Lie algebras are provided. We also describe ternary distributive algebraic structures coming from groups and give examples from vector spaces whose bases are elements of a finite ternary distributive set. We introduce a cohomology theory that is analogous to Hochschild cohomology and relate it to a formal deformation theory of these structures.