R, fuzzy **R**, and Algebraic Kripke-style Semantics* ***

Eunsuk Yang

[Abstract] This paper deals with Kripke-style semantics for FR, a fuzzy version of R of Relevance. For this, first, we introduce FR, define the corresponding algebraic structures FR-algebras, and give algebraic completeness results for it. We next introduce an algebraic Kripke-style semantics for FR, and connect it with algebraic semantics. We furthermore show that such semantics does not work for R.

[Key Words] Kripke-style semantics, Algebraic semantics, Many-valued logic, Fuzzy logic, R, FR.

^{*} 접수일자:2012.04.01 심사 및 수정 완료일:2012.05.20 게재확정일:2012.05.29

^{**} This paper was supported by research funds of Chonbuk National University in 2012. I must thank the anonymous referees for their helpful comments.

1. Introduction

It is well known that many relevance logicians have had difficulties in providing binary relational Kripke-style semantics, i.e., semantics with binary accessibility relations, for relevance logics (see e.g. $[3,\ 4]$). To the best of my knowledge, any satisfactory such semantics for R has not yet been introduced. In this paper we show that such semantics can be provided for a fuzzy version of the system R of Relevance, although not R itself.

Actually, this is a free continuation of the paper [11]. In it the author provided algebraic Kripke-style semantics for Uninorm logic UL. Here we introduce algebraic Kripke-style semantics for FR, a fuzzy version of R.¹⁾ For this, first, in Section 2 we introduce FR, define the corresponding algebraic structures FR-algebras, and give algebraic completeness results for it. In Section 3 we introduce an algebraic Kripke-style semantics for FR, and connect them with algebraic semantics. We furthermore show that this semantics does not work for R (see Example 3.9).

For convenience, we shall adopt the notation and terminology similar to those in [5, 7, 8, 10], and assume familiarity with them (together with the results found in them).

2. The logic FR and its algebraic semantics

We base FR on a countable propositional language with

¹⁾ To see why algebraic Kripke-style semantics are interesting, see [12].

formulas FOR built inductively as usual from a set of propositional variables VAR, binary connectives \rightarrow , &, \wedge , \vee , and constants \mathbf{f} , \mathbf{t} , with defined connectives:²⁾

df1.
$$\sim \varphi := \varphi \rightarrow \mathbf{f}$$

df2. $\varphi \leftrightarrow \psi := (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$.

We moreover define $\phi_t := \phi \wedge t$. For the remainder we shall follow the customary notation and terminology. We use the axiom systems to provide a consequence relation.

We start with the following axiomatization of FR.

Definition 2.1 FR consists of the following axiom schemes and rules⁻³)

A1. $\phi \rightarrow \phi$ (self-implication, SI)

A2.
$$(\phi \land \psi) \rightarrow \phi$$
, $(\phi \land \psi) \rightarrow \psi$ (\land -elimination, \land -E)

A3.
$$((\phi \rightarrow \psi) \land (\phi \rightarrow \chi)) \rightarrow (\phi \rightarrow (\psi \land \chi)) (\land \text{-introduction}, \land \text{-I})$$

A4.
$$\varphi \rightarrow (\varphi \lor \psi)$$
, $\psi \rightarrow (\varphi \lor \psi)$ (\lor -introduction, \lor -I)

A5.
$$((\phi \rightarrow \chi) \land (\psi \rightarrow \chi)) \rightarrow ((\phi \lor \psi) \rightarrow \chi) \quad (\lor \text{-elimination}, \lor \text{-E})$$

A6.
$$(\phi \land (\psi \lor \chi)) \rightarrow ((\phi \land \psi) \lor (\phi \land \chi))$$
 ($\land \lor$ -distributivity, $\land \lor$ -D)

A7.
$$(\phi \& \psi) \rightarrow (\psi \& \phi)$$
 (&-commutativity, &-C)

A8.
$$(\phi \& t) \leftrightarrow \phi$$
 (push and pop, PP)

²⁾ Note that while \wedge is the extensional conjunction connective, & is the intensional conjunction one.

³⁾ A6, indeed, is redundant in **FR**. But we introduce this in order to show that **R** is the **FR** omitting A13. Note that the system omitting both A6 and A13 is not **R** (cf see [1, 2, 4]).

A9.
$$(\phi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\phi \rightarrow \chi))$$
 (suffixing, SF)

A10.
$$(\phi \rightarrow (\psi \rightarrow \chi)) \leftrightarrow ((\phi \& \psi) \rightarrow \chi)$$
 (residuation, RE)

A11.
$$\phi \rightarrow (\phi \& \phi)$$
 (contraction, CR)

A12. $\sim \sim \phi \rightarrow \phi$ (double negation elimination, DNE)

A13.
$$(\varphi \rightarrow \psi)_t \lor (\psi \rightarrow \varphi)_t$$
 (t-prelinearity, PL_t)

$$\phi \rightarrow \psi$$
, $\phi \vdash \psi$ (modus ponens, mp)

$$\Phi$$
, $\Psi \vdash \Phi \land \Psi$ (adjunction, adj).

A13 is the axiom scheme for linearity, and logics being complete w.r.t. linearly ordered (corresponding) algebras are said to be fuzzy logics (see e.g. [3]).

Note that the system **R** is the **FR** omitting A13. Note also that in **R** (and so **FR**), $\phi \rightarrow \psi$ can be defined as $\sim (\phi \& \sim \psi)$ (df3), and $\phi \& \psi$ as $\sim (\phi \rightarrow \sim \psi)$ (df4).

Proposition 2.2 FR proves:

- (1) $(\phi \& (\psi \& \chi)) \leftrightarrow ((\phi \& \psi) \& \chi)$ (&-associativity, AS)
- $(2) \ (\varphi \ \land \ \psi) \rightarrow (\varphi \ \& \ \psi)$
- (3) $(\phi \& (\psi \land \chi)) \leftrightarrow ((\phi \& \psi) \land (\phi \& \chi))$
- $(4) \ (\varphi \to (\psi \ \lor \ \chi)) \leftrightarrow ((\varphi \to \psi) \ \lor \ (\varphi \to \chi))$
- $(5) \ ((\varphi \to (\psi \ \lor \ \chi)) \ \land \ (\psi \to \chi)) \to (\varphi \to \chi).$

Proof: The proof for (1) to (3) is easy, just noting that in order to prove (3) we need A13 (cf. see [1]). We prove (4) and (5).

For the proof of (4), first note that in **R**, we can easily prove $(\Phi \to (\Psi \lor \chi)) \leftrightarrow (\Phi \to (\sim \Psi \land \sim \chi))$ and $(\Phi \to \sim (\sim \Psi \land \sim \chi))$

For the proof of (5), first note that in **R**, we can easily prove $((\Phi \to \psi) \land (\psi \to \chi)) \to (\Phi \to \chi)$ using (2). Then, since $((\Phi \to \chi) \land (\psi \to \chi)) \to (\Phi \to \chi)$, we can obtain $(((\Phi \to \psi) \land (\psi \to \chi)) \lor ((\Phi \to \chi) \land (\psi \to \chi))) \to (\Phi \to \chi)$. Thus, using A6, we get $((\psi \to \chi) \land ((\Phi \to \psi) \lor (\Phi \to \chi))) \to (\Phi \to \chi)$. Hence, using (4), we can obtain that $((\Phi \to (\psi \lor \chi)) \land (\psi \to \chi)) \to (\Phi \to \chi)$, as wished. \square

Note that **R** does not prove (5) in Proposition 2.2 (see [5]).

In FR, f can be defined as \sim t. A theory over FR is a set T of formulas. A proof in a theory T over FR is a sequence of formulas whose each member is either an axiom of FR or a member of T or follows from some preceding members of the sequence using the two rules in Definition 2.1. T $\vdash \varphi$, more exactly T $\vdash_{FR} \varphi$, means that φ is provable in T w.r.t. FR, i.e., there is a FR-proof of φ in T. The relevant deduction theorem (RDT₁) for FR is as follows:

Proposition 2.3 ([7]) Let T be a theory, and Φ , Ψ formulas. (RDT_t) T \cup { Φ } \vdash Ψ iff T \vdash Φ _t \rightarrow Ψ .

212 Eunsuk Yang

For convenience, " \sim ", " \wedge ", " \vee ", and " \rightarrow " are used ambiguously as propositional connectives and as algebraic operators, but context should make their meaning clear.

The algebraic counterpart of **FR** is the class of *FR-algebras*. Let $x_t := x \wedge t$. They are defined as follows.

Definition 2.4 (i) A pointed commutative residuated distributive lattice is a structure $A = (A, t, f, \land, \lor, *, \rightarrow)$ such that:

- (I) (A, \land, \lor) is a distributive lattice.
- (II) (A, *, t) is a commutative monoid.
- (III) $y \le x \rightarrow z$ iff $x * y \le z$, for all $x, y, z \in A$ (residuation).
- (ii) (Dunn-algebras, [1, 2]) A *Dunn-algebra* is a pointed commutative residuated distributive lattice satisfying:
 - (IV) $x \le x * x$ (contraction).
 - (V) $(x \rightarrow f) \rightarrow f \le x$ (double negation elimination).
- (iii) (FR-algebras) A FR-algebra is a Dunn-algebra satisfying:

$$(VI) \ t \ \leq \ (x \ \rightarrow \ y)_t \ \lor \ (y \ \rightarrow \ x)_t \ (pl_t).$$

Note that the class of Dunn-algebras characterizes the system **R**. Note also that Dunn-algebras are also called De Morgan monoids.

Additional (unary) negation and (binary) equivalence operations are defined as in Section 2.1: $\sim x := x \rightarrow f$ and $x \leftrightarrow y := (x \rightarrow y) \land (y \rightarrow x)$.

The class of all FR-algebras is a variety which will be denoted by FR.

FR-algebra is said to be *linearly ordered* if the ordering of its algebra is linear, i.e., $x \le y$ or $y \le x$ (equivalently, $x \land y = x$ or $x \land y = y$) for each pair x, y.

Definition 2.5 (Evaluation) Let \mathcal{A} be an algebra. An \mathcal{A} -evaluation is a function $v: FOR \to \mathcal{A}$ satisfying: $v(\varphi \to \psi) = v(\varphi) \to v(\psi)$, $v(\varphi \land \psi) = v(\varphi) \land v(\psi)$, $v(\varphi \lor \psi) = v(\varphi) \lor v(\psi)$, $v(\varphi \& \psi) = v(\varphi) * v(\psi)$, v(f) = f, (and hence $v(\sim \varphi) = \sim v(\varphi)$ and v(f) = f).

Definition 2.6 Let \mathcal{A} be a FR-algebra, T a theory, Φ a formula, and K a class of FR-algebras.

- (i) (Tautology) Φ is a *t-tautology* in A, briefly an A-tautology (or A-valid), if $v(\Phi) \geq t$ for each A-evaluation v.
- (ii) (Model) An A-evaluation v is an A-model of T if $v(\varphi) \ge t$ for each $\varphi \in T$. By Mod(T, A), we denote the class of A-models of T.
- (iii) (Semantic consequence) Φ is a semantic consequence of T w.r.t. K, denoting by $T \models_K \Phi$, if $Mod(T, \mathcal{A}) = Mod(T \cup \{\Phi\}, \mathcal{A})$ for each $\mathcal{A} \subseteq K$.

Definition 2.7 (FR-algebra) Let \mathcal{A} , T, and Φ be as in Definition 2.6. \mathcal{A} is a FR-algebra iff whenever Φ is FR-provable in T (i.e. $T \vdash_{FR} \Phi$), it is a semantic consequence of T w.r.t. the set $\{\mathcal{A}\}$ (i.e. $T \vDash_{\{A\}} \Phi$), \mathcal{A} a FR-algebra. By $MOD^{(l)}(FR)$, we denote the class of (linearly ordered) FR-algebras. Finally, we write $T \vDash_{FR} \Phi$ in place of $T \vDash_{MOD}^{(l)}(FR) \Phi$.

214 Eunsuk Yang

Note that since each condition for the FR-algebra has a form of equation or can be defined in equation (exercise), it can be ensured that the class of all FR-algebras is a variety.

We first show that classes of provably equivalent formulas form a FR-algebra. Let T be a fixed theory over **FR**. For each formula Φ , let $[\Phi]_T$ be the set of all formulas Ψ such that $T \vdash_{FR} \Phi \leftrightarrow \Psi$ (formulas T-provably equivalent to Φ). A_T is the set of all the classes $[\Phi]_T$. We define that $[\Phi]_T \to [\Psi]_T = [\Phi \to \Psi]_T$, $[\Phi]_T * [\Psi]_T = [\Phi \& \Psi]_T$, $[\Phi]_T \wedge [\Psi]_T = [\Phi \wedge \Psi]_T$, $[\Phi]_T \vee [\Psi]_T = [\Phi \vee \Psi]_T$, $[\Phi]_T$, and $\bot_f = [f]_T$. By A_T , we denote this algebra.

Proposition 2.8 For T a theory over FR, A_T is a FR-algebra.

Proof: Note that A1 to A6 ensure that \land and \lor satisfy (I) in Definition 2.4; that A7, A8, and AS ensure that & satisfies (II); that A10 ensures that (III) holds; and that A11, A12, and A13 ensure that (IV), (V), and (VI), respectively, hold. It is obvious that $[\Phi]_T \leq [\Psi]_T$ iff $T \vdash_{FR} \Phi \leftrightarrow (\Phi \land \Psi)$ iff $T \vdash_{FR} \Phi \rightarrow \Psi$. Finally recall that A_T is a **FR**-algebra iff $T \vdash_{FR} \Psi$ implies $T \vDash_{FR} \Psi$, and observe that for Φ in T, since $T \vdash_{FR} \mathbf{t} \rightarrow \Phi$, it follows that $[\mathbf{t}]_T \leq [\Phi]_T$. Thus it is a **FR**-algebra. \square

We next note that the nomenclature of the prelinearity condition is explained by the subdirect representation theorem below.

Proposition 2.9 (Cf. [10]) Each FR-algebra is a subdirect

product of linearly ordered FR-algebras.

Theorem 2.10 (Strong completeness) Let T be a theory, and Φ a formula. T $\vdash_{FR} \Phi$ iff T $\vDash_{FR} \Phi$ iff T $\vDash_{FR} \Phi$.

Proof: (i) $T \vdash_{FR} \varphi$ iff $T \vDash_{FR} \varphi$. The left-to-right direction follows from definition. The right-to-left direction is as follows: from Proposition 2.8, we obtain $A_T \in MOD(FR)$, and for A_T -evaluation v defined as $v(\psi) = [\psi]_T$, it holds that $v \in Mod(T, A_T)$. Thus, since from $T \vDash_{FR} \varphi$ we obtain that $[\varphi]_T = v$ $(\varphi) \ge t$, $T \vdash_{FR} t \to \varphi$. Then, since $T \vdash_{FR} t$, by $(mp) T \vdash_{FR} \varphi$, as required.

(ii) $T \models_{FR} \varphi$ iff $T \models_{FR}^1 \varphi$. It follows from Proposition 2.9. \square

3. Kripke-style semantics for FR

Here we consider algebraic Kripke-style semantics for FR.

Definition 3.1 (Algebraic Kripke frame) An algebraic Kripke frame is a structure $\mathbf{X} = (X, t, f, \leq, *, \rightarrow)$ such that $(X, t, f, \leq, *, \rightarrow)$ is a linearly ordered residuated pointed commutative monoid. The elements of \mathbf{X} are called *nodes*.

Definition 3.2 (FR frame) A FR frame is an algebraic Kripke frame, where $x = (x \rightarrow f) \rightarrow f$, and * is contractive, i.e., $x \le x * x$.

216 Eunsuk Yang

An evaluation or forcing on an algebraic Kripke frame is a relation \Vdash between nodes and propositional variables, and arbitrary formulas subject to the conditions below: for every propositional variable p,

(AHC) if
$$x \Vdash p$$
 and $y \le x$, then $y \Vdash p$; and

for arbitrary formulas,

- (t) $x \Vdash t \text{ iff } x \leq t$;
- (f) $x \Vdash f \text{ iff } x \leq f$;
- (\land) $x \Vdash \varphi \land \psi = iff x \Vdash \varphi and x \Vdash \psi$;
- (\vee) $x \Vdash \varphi \lor \psi$ iff $x \Vdash \varphi$ or $x \Vdash \psi$;
- (&) $x \Vdash \varphi$ & ψ iff there are $y, z \in X$ such that $y \Vdash \varphi$, $z \Vdash \psi$, and $x \leq y * z$;
- $(\rightarrow) \quad x \; \Vdash \; \varphi \to \psi \; \text{iff for all} \; y \; \subseteq \; X, \; \text{if} \; y \; \Vdash \; \varphi, \; \text{then} \; x \; * \; y \\ \Vdash \; \psi.$
- **Definition 3.3** (i) (Algebraic Kripke model) An *algebraic Kripke model* is a pair (X, \Vdash) , where X is an algebraic Kripke frame and \Vdash is a forcing on X.
- (ii) (FR model) A FR model is a pair (X, \vdash) , where X is a FR frame and \vdash is a forcing on X.

Definition 3.4 (Cf. [9]) Given an algebraic Kripke model (\mathbf{X} , \Vdash), a node \mathbf{X} of \mathbf{X} and a formula Φ , we say that x forces Φ to express $\mathbf{X} \Vdash \Phi$. We say that Φ is *true* in (\mathbf{X} , \Vdash) if $\mathbf{t} \Vdash \Phi$, and

that ϕ is *valid* in the frame **X** (expressed by **X** models ϕ) if ϕ is true in (X, \vdash) for every forcing \vdash on **X**.

For soundness and completeness for FR, let $\vdash_{FR} \varphi$ be the theoremhood of φ in FR. First we note the following lemma.

Lemma 3.5 (Hereditary Lemma, HL) Let X be an algebraic Kripke frame. For any sentence φ and for all nodes x, $y \in X$, if $x \Vdash \varphi$ and $y \le x$, then $y \Vdash \varphi$.

Proof: Easy. \square

Proposition 3.6 (Soundness) If $\vdash_{FR} \varphi$, then φ is valid in every FR frame.

Proof: We prove the validity of A11 as an example: it suffices to show that if $x \Vdash \varphi$, then $x \Vdash \varphi \& \varphi$. Assume $x \Vdash \varphi$. Then, since $x \le x * x$, using (&), we can obtain $x \Vdash \varphi \& \varphi$, as required.

The proof for the other cases is left to the interested reader. \square

By a *chain*, we mean a linearly ordered algebra. The next proposition connects algebraic Kripke semantics and algebraic semantics for **FR** (cf. see [9]).

Proposition 3.7 (i) The $\{t, f, \leq, *, \rightarrow\}$ reduct of a FR-chain **A** is a FR frame.

- (ii) Let $X = (X, t, f, \le, *, \rightarrow)$ be a FR frame. Then the structure $A = (X, t, f, max, min, *, \rightarrow)$ is a FR-algebra (where max and min are meant w.r.t. \le).
- (iii) Let X be the $\{t, f, \leq, *, \rightarrow\}$ reduct of a FR-chain A, and let v be an evaluation in A. Let for every atomic formula p and for every $x \in A$, $x \Vdash p$ iff $x \leq v(p)$. Then (X, \Vdash) is a FR model, and for every formula φ and for every $x \in A$, we obtain that: $x \Vdash \varphi$ iff $x \leq v(\varphi)$.

Proof: The proof for (i) and (ii) is easy. For the proof of (iii), see Proposition 3.8 in [10]. \square

Theorem 3.8 (Strong completeness) **FR** is strongly complete w.r.t. the class of all FR-frames.

Proof: It follows from Proposition 3.7 and Theorem 2.10.

Let an R frame X be an FR frame on a partially ordered monoid in place of a linearly ordered monoid, let an evaluation or forcing \Vdash on an R frame be the same as that on a FR frame, and let (X, \Vdash) be an R model. Then, at first glance, (X, \Vdash) seems to be a model for R. But actually it is not. The following example verifies it.

Example 3.9 An R model (X, \vdash) validates Proposition 2.2 (5), i.e., $t \vdash ((\varphi \rightarrow (\psi \lor \chi)) \land (\psi \rightarrow \chi)) \rightarrow (\varphi \rightarrow \chi)$.

Proof: By (\rightarrow) and (\land) , we assume $x \vdash (\varphi \rightarrow (\psi \lor \chi))$ and $x \vdash \psi \rightarrow \chi$, and show $x \vdash \varphi \rightarrow \chi$. For this last, we further assume $y \vdash \varphi$ and show $x * y \vdash \chi$. By the suppositions and (\rightarrow) , we have $x * y \vdash \psi \lor \chi$, therefore $x * y \vdash \psi$ or $x * y \vdash \chi$ by (\lor) . Let $x * y \vdash \psi$. Then, since $x \vdash \psi \rightarrow \chi$, by (\rightarrow) we obtain $x * (x * y) \vdash \chi$, therefore $(x * x) * y \vdash \chi$ by the associativity of *. Then, since $x \le x * \chi$, using Lemma 3.5, we get $x * y \vdash \chi$. \square

This sentence is not a theorem of \mathbf{R} but a theorem of \mathbf{FR} . Thus this model is not for \mathbf{R} .

4. Concluding remark

We investigated algebraic Kripke-style semantics for FR, a fuzzy version of R. We proved soundness and completeness theorems. But we did not provide algebraic Kripke-style semantics for R. This is an open problem left in this paper.

References

- [1] Anderson, A. R., and Belnap, N. D. (1975), *Entailment: The Logic of Relevance and Necessity*, vol. 1, Princeton, Princeton Univ. Press.
- [2] Anderson, A. R., Belnap, N. D., and Dunn, J. M. (1992), Entailment: The Logic of Relevance and Necessity, vol. 2, Princeton, Princeton Univ. Press.
- [3] Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", *Archive for Mathematical Logic*, pp. 673-704.
- [4] Dunn, J. M. (1976), "A Kripke-style semantics for R-Mingle using a binary accessibility relation", *Studia Logica*, 35, pp. 163-172.
- [5] Dunn, J. M. (1986), "Relevance logic and entailment", Handbook of Philosophical Logic, vol. III, D. Gabbay and F. Guenthner (eds.), Dordrecht, D. Reidel Publ. Co., pp. 117-224.
- [6] Dunn, J. M. (2000), "Partiality and its Dual", Studia Logica, 66, pp. 5-40.
- [7] Meyer, R. K., Dunn, J. M., and Leblanc, H. (1976), "Completeness of relevant quantification theories", *Notre Dame Journal of Formal Logic*, 15, pp. 97-121.
- [8] Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly*, 49, pp. 629-641.
- [9] Montagna, F. and Sacchetti, L. (2004), "Corrigendum to

- "Kripke-style semantics for many-valued logics", *Mathematical Logic Quaterly*, 50, pp. 104-107.
- [10] Tsinakis, C., and Blount, K. (2003), "The structure of residuated lattices", *International Journal of Algebra and Computation*, 13, pp. 437-461.
- [11] Yang, E. (2012), "Kripke-style semantics for UL", Korean Journal of Logic, 15/1, pp. 1-15.
- [12] Yang, E., "Algebraic Kripke-style semantics for relevance logics", manuscript.

전북대학교 철학과

Department of Philosophy, Chonbuk National University eunsyang@jbnu.ac.kr

R, fuzzy R, and Algebraic Kripke-style Semantics

양 은 석

이 글에서 우리는 연관 논리 R을 퍼지화한 체계 FR을 위한 크립키형 의미론을 다룬다. 이를 위하여 먼저 FR 체계를 소개하고 그에 상응하는 FR-대수를 정의한 후 FR이 대수적으로 완전하다는 것을 보인다. 다음으로 FR을 위한 대수적 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다. 마지막으로 이러한 의미론이 R에는 적용될 수 없다는 점을 보인다.

주요어: R, FR, (대수적) 크립키형 의미론, 대수적 의미론, 다치 논리, 퍼지 논리