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LEGENDRIAN RACK INVARIANTS OF

LEGENDRIAN KNOTS

Jose Ceniceros, Mohamed Elhamdadi, and Sam Nelson

Abstract. We define a new algebraic structure called Legendrian racks

or racks with Legendrian structure, motivated by the front-projection
Reidemeister moves for Legendrian knots. We provide examples of Leg-

endrian racks and use these algebraic structures to define invariants of
Legendrian knots with explicit computational examples. We classify Leg-

endrian structures on racks with 3 and 4 elements. We use Legendrian

racks to distinguish certain Legendrian knots which are equivalent as
smooth knots.

1. Introduction

Racks and quandles are algebraic structures whose axioms were motivated
by the Reidemeister moves in knot theory. Quandles were introduced indepen-
dently by Joyce and Matveev in the 1980s [17,19]; their generalizations known
as racks were introduced in the early 1990s by Fenn and Rourke [15]. For ori-
ented non-split links in S3, the fundamental quandle of a link forms a complete
invariant up to mirror image. Quandles have been used to construct invariants
of oriented knots and links in many papers over the last few decades. Quandles
have been studied in various contexts: they have been studied, for example, as
algebraic systems for symmetries in [24], in relation to modules [20], in relation
to the Yang-Baxter equation [1, 2], ring theory [5] and also in connection with
topological spaces in [4, 7, 22].

Finite racks and quandles, in particular, give rise to powerful invariants of
knots, links and other knotted objects (surface-links, handlebody-links, spatial
graphs) through counting invariants and their various enhancements. Since
quandle colorings are preserved by Reidemeister moves, the number of quan-
dle colorings of a knot or link diagram is an integer-valued invariant. More
generally, any invariant of quandle-colored knots and links defines an invariant
called an enhancement from which the counting invariant can be recovered but
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which is typically a stronger invariant. For more details on racks and quandles
and their variations, see [8].

In [18], the authors introduced rack invariants of oriented Legendrian knots
in R3 endowed with the standard contact structure. These invariants are not
complete but they detect some of the geometric properties in some Legendrian
knots such as cusps. In this paper, we define a new algebraic structure called a
Legendrian rack, motivated by the front-projection Reidemeister moves for Leg-
endrian knots. We show that the resulting counting invariant distinguishes the
unknot and its positive stabilization, the trefoil and its positive stabilization,
the trefoil and its negative stabilization and more such pairs. The invariants
given in [18] form a special case of our structure, but our invariants are able
to distinguish Legendrian knots that are not distinguished by the invariants in
[18].

The paper is organized as follows. In Section 2, we review the basics of
racks and quandles and give some examples. Section 3 deals with an overview
of contact geometry in general and relations to knot theory in particular. In
Section 4, we define Legendrian racks motivated by Reidemeister moves in Leg-
endrian knot theory. A characterization of (t, s)-racks with a certain map being
Legendrian racks is given. This section contains a classification of Legendrian
structures on racks with 3 and 4 elements in addition to some other explicit
examples. In Section 5 colorings of Legendrian knots by Legendrian racks is
used to distinguish certain Legendrian knots.

2. Review of racks and quandles

We begin with a definition from [15].

Definition 1. A rack is a set X with two binary operations . and . satisfying
for all x, y, z ∈ X

(i) (x . y) . y = x = (x . y) . y and
(ii) (x . y) . z = (x . z) . (y . z).

A rack which further satisfies x . x = x for all x ∈ X is a quandle.

Example 1. Some examples of racks and quandles include:

• Any group G is a quandle with operation given by conjugation

x . y = y−1xy

called the conjugation quandle of G.
• Any group G is a quandle with operation

x . y = yx−1y

called the core quandle of G. Core quandles are involutory, i.e., (x .
y) . y = x,∀x, y ∈ G.

• Any Z[t±1]-module X is a quandle with operation

x . y = tx+ (1− t)y
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called an Alexander quandle.
• Any group G with an automorphism σ ∈ Aut(G) is a quandle with

operation

x . y = σ(xy−1)y

called a generalized Alexander quandle. When G is abelian this reduces
to the case above.

• Any Z[t±1, s]/(s2 − (1− t)s)-module V is a rack with rack operations

x . y = tx+ sy

known as a (t, s)-rack. Alexander quandles are (t, s)-racks with s =
1− t.

Quandles and racks are of interest in knot theory because they can be used
to define an easily computable family of knot and link invariants known as
counting invariants or coloring invariants. Given a finite quandle X, an as-
signment of an element of X to each arc in an oriented link diagram D is an
X-coloring of D if at every crossing we have the following picture:

That is, if the overcrossing strand is directed down, then the strand crossing
under from left to right colored by x is acted on by the color on the overcrossing
strand colored y to become the undercrossing strand colored x . y. If we write
z = x . y, then we can regard the crossing under in the opposite direction to
be the inverse action by y, i.e., we have z = x . y crossing under y from right
to left to become x = z .−1 y.

It is straightforward to check that Reidemeister moves do not change the
number of X-colorings of an oriented link diagram when X is a quandle,
and blackboard-framed Reidemeister moves do not change the number of X-
colorings of a blackboard-framed oriented link diagram. Hence, from any di-
agram D of an oriented link, we can compute the quandle counting invariant
ΦZ
X(L), i.e., the number of quandle colorings of our diagram D. This is an

integer-valued invariant of oriented knots and links.

Example 2. The trefoil knot below has 9 colorings by the Alexander quan-
dle X = Z3[t]/(t − 2) as one can compute easily from the system of coloring
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equations determined by the crossings.

tx2 + (1− t)x1 = x3

tx3 + (1− t)x2 = x1

tx1 + (1− t)x3 = x2

⇒
2x2 + 2x1 = x3

2x3 + 2x2 = x1

2x1 + 2x3 = x2.

See [8] for more.

3. Contact manifolds and knot theory

3.1. Standard contact structure on R3

In this section we will introduce contact structures and related terminol-
ogy. The goal of this section is to give an overview of contact geometry, for a
more complete description of the theory and for important results the reader
is referred to [9, 13,14,16].

Definition 2. An oriented 2-plane field ξ on a 3-manifold M is called a contact
structure if for any 1-form defined locally or globally with ξ = ker(α) satisfies
α ∧ dα 6= 0. The pair (M, ξ) is called a contact manifold.

The condition α ∧ dα 6= 0 is known as a totally non-integrability condition.
This condition ensures that there is no embedded surface in M which is tangent
to ξ on any open neighborhood. In this paper we will restrict our attention to
the following contact structure on R3.

Example 3. Let R3 with standard Cartesian coordinates (x, y, z) and the
1-form

α = dz − ydx.
We can confirm that the non-integrability condition is met by the following
computation

α ∧ dα = (dz − ydx) ∧ (−dy ∧ dx)

= (−dz ∧ dy ∧ dx) + ydx ∧ dy ∧ dx
= dx ∧ dy ∧ dz.

Thus, α is a contact form and

ξstd = ker(α)

= ker(dz − ydx)
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= Span
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}
is a contact structure on R3.

Remark 1. At any point in the xz-plane ξ is horizontal and moving along a
ray perpendicular to the xz-plane the plane field will always be tangent to this
ray and rotate by π/2 in a right handed manner as move along the ray.

Example 3 is commonly referred to as the standard contact structure on
R3. As mentioned above we will restrict our attention to the contact manifold
(R3, ξstd). We will be specifically interested in 1-dimensional submanifolds in
(R3, ξstd).

3.2. Legendrian knots

We will be considering knots in (R3, ξstd), which are simple closed curves
that respect the geometry imposed by the contact structure. There are two
natural ways that knots can respect the geometry imposed by contact struc-
tures, therefore, there are two classes of knots: the Legendrian class and the
transverse class. We will restrict our attention to Legendrian knots. This sec-
tion is not meant to be a complete survey on the subject, for a detail description
of knot theory supported in a contact 3-manifold, see [14,16,23].

We have the following definition from [16].

Definition 3. A Legendrian knot L in (R3, ξstd) is a smooth embedding of S1

that is always tangent to ξstd:

TxL ∈ ξx, x ∈ L.

Where TxL is the tangent space of L at the point x and ξx is the contact
plane from the contact structure ξstd at the point x.

Two Legendrian knots in (R3, ξstd) are Legendrian isotopic if there is an iso-
topy through Legendrian knots between the two knots. A Legendrian knot
can be parameterized by an embedding φ : S1 → R3 defined by φ(θ) =
(x(θ), y(θ), z(θ)). A parametrization of L will induce an orientation on L,
therefore, we can consider oriented Legendrian knot by choosing the orienta-
tion induced by φ. Studying the Legendrian knot in R3 is difficult, therefore,
it is common to study projections of L in R2. We will focus on the projection
known as the front projection. Before we describe the front projection of L,
we should note that since φ is a parametrization of L and ξ = ker(dz − ydx),
therefore, in order for L to be tangent to the contact planes φ must satisfy the
following:

(1) z′(θ)− y(θ)x′(θ) = 0.

Let Π : R3 → R2 defined by (x, y, z) 7→ (x, z). The image of L under Π is the
front projection of L. If φ is a parametrization of L, then

φΠ : S1 → R2
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defined by

θ 7→ (x(θ), z(θ))

is a parametrization of the image of L under Π. From the equation (1) we get

y(θ) = z′(θ)
x′(θ) provided that (x(θ), z(θ)) does not have vertical tangencies. We

can summarize the conditions on a front projection for a Legendrian knot by

(1) K has no vertical tangencies,
(2) the only non-smooth points are cusps,
(3) at each crossing the slope of the over crossing is smaller than the un-

dercrossing.

Two Legendrian knots L1 and L2 are Legendrian isotopic if and only if their
front projections are related by a sequence of Legendrian Reidemeister moves
listed below as well as the rotation of each diagram by 180 degrees about all
the coordinate axes.

An interesting note about Legendrian knots is that you have different Leg-
endrian knot representatives of a topological knot type. The operation that
produces different Legendrian knots of the same topological knot type is called
stabilization. A stabilization of a Legendrian knot L in a front projection of
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L can be obtained by removing a strand and replacing it with a zig-zag. We
denote a positive stabilization by S+ and a negative stabilization by S−.

S+

S−

Example 4. The following are two Legendrian isotopic representatives of the
unknot:

The problem of classifying Legendrian knots is a difficult problem, [10, 11].
The first invariant is the topological knot type of the Legendrian knot. Leg-
endrian knots also come equipped with two invariants known as the classical
invariants. The first is the Thurston-Bennequin number denoted by tb. The
second invariant is the rotation number denoted by rot. Both of these invari-
ants can be computed directly from front projections, but they also have deep
relationships to the underlying geometric structure.

A topological knot type is Legendrian simple if all Legendrian knots in its
class are determined up to Legendrian isotopy by their classical invariants.
Some knot types which are known to be Legendrian simple include the unknot,
torus knots, and the figure eight knot. Note that the classical invariants are not
sufficient to classify all Legendrian knots. The introduction of finer invariants
such as contact homology, Chekanov’s DGA, and the GRID invariants have
been useful tools in addressing the classification problem [3,12,21].

4. Legendrian racks

We introduce the notion of Legendrian rack and we give some examples. We
will assign labels to the arcs of a Legendrian knots in the following manner:

x y

y . x x

x y . x

y x

f(x)

x
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The definition of Legendrian rack is motivated by the diagrams of Legendrian
Reidemeister moves subject to the above relation (see the figures below). The
type I move has four diagrams, but we include only two diagrams. It is easy
to check that the other two diagrams do not give different relations.

f 2(x . x) x . x

f(x . x)

x x

x x

f 2(x)

f(x)

f 2(x) . x x

x x

Now we consider the four diagrams coming from the Legendrian Reidemeis-
ter move type II.

f(x . y) . y
y

f(x . y)

x . y

x y

f(x)
y

yx

f(x . y) . y
y

f(x . y)

x . y

x y

f(x)
y

yx

f(x) (y . x) . f(x)

y . x

y x

f(x)
y

xy
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f(x) y

y . f(x)

(y . f(x)) . x
x

f(x)
y

xy

Lastly, we consider the type III Legendrian Reidemeister move.

z

z

y . zy

x

x . z

(x . z) . (y . z) z

z

y . zy

x

x . y

(x . y) . z

Thus we can make the following definition:

Definition 4. A Legendrian rack is a triple (X, ., f), where (X, .) is a rack
and f : X → X is a map such that the following properties hold for all x, y ∈ X:

(I) f2(x . x) = x = f2(x) . x,
(II) f(x . y) = f(x) . y,
(III) x . f(y) = x . y.

The map f is called a Legendrian map or Legendrian structure on X.

By construction, we have the following:

Proposition 1. Let (X, ., f) be a Legendrian rack. Then the number ΦZ
X(L)

of colorings of a front projection L of a Legendrian knot or link is an integer-
valued invariant of Legendrian isotopy. We call this number of colorings the
Legendrian rack counting invariant.

Remark 2. Note that if the rack operation . is idempotent, then the map f in
Definition 4 becomes an involution.

Proposition 2. If (X, ., f) is a finite Legendrian rack, then the map f is an
automorphism of the rack (X, .).

Proof. Let (X, ., f) be a Legendrian rack. Then the conditions (II) and (III)
of Definition 4 imply that

f(x . y) = f(x . f(y)) = f(x) . f(y),

making f a homomorphism of the rack (X, .). Now if f(x) = f(y), then we
have

x = f2(x) . x = f2(y) . x = f2(y) . f2(x) = f2(y) . f2(y) = f2(y) . y = y,
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giving bijectivity since X is finite set. Thus the map f is a rack automorphism.
�

Remark 3. Notice that the converse of this proposition is not true. Take X =
Z4 with x . y = x + 1 and f(x) = x + 1. The first condition of Definition 4 is
not satisfied since f2(x . x) = f2(x+ 1) = x+ 3 6= x.

Automorphisms of quandles and racks have been investigated in [6], where
it was shown that automorphism of dihedral quandles are affine maps f(x) =
ax+ b.

Definition 5. Let (X, .X , fX) and (Y, .Y , fY ) be two Legendrian racks. A
Legendrian rack homomorphism between (X, .X , fX) and (Y, .Y , fY ) is a rack
homomorphism ψ : (X, .X)→ (Y, .Y ) such that fY ◦ψ = ψ◦fX , where .X and
.Y denote the rack operations of X and Y , respectively. A Legendrian rack
isomorphism is a bijective Legendrian rack homomorphism, and two Legendrian
racks are isomorphic if there is a Legendrian rack isomorphism between them.

Let X be a (t, s)-rack and consider a map f : X → X defined by f(x) =
ax+ b for some a, b ∈ X. What conditions are needed to make f a Legendrian
structure?

Condition (I) says that

a2(t+ s)x+ (ab+ b) = x = (a2t+ s)x+ t(ab+ b)

which implies ab + b = (a + 1)b = 0 and a2(t + s) = 1 = a2t + s. Then
a2s = s implies (1− a2)s = 0, so we obtain the necessary and jointly sufficient
conditions a2(t+ s) = 1 and (1− a2)s = 0 for (I).

Condition (II) says that

a(tx+ sy) + b = atx+ asy + b = t(ax+ b) + sy = atx+ tb+ sy

so we must have (1− a)s = 0 and (1− t)b = 0, and condition (III) says

tx+ s(ay + b) = tx+ asy + sb = tx+ sy

so we must have sb = 0 and (1 − a)s = 0. Collecting the conditions together,
we have proved:

Proposition 3. Let X be a (t, s)-rack, i.e., a Z[t±1, s]/(s2− (1− t)s)-module.
Then X is a Legendrian rack under the operations

x . y = tx+ sy and f(x) = ax+ b

for a, b ∈ X if and only if a2(t + s) = 1 and (a + 1)b = (1 − a)s = (1 − t)b =
sb = 0.

Example 5. Consider Z8 as a rack with operation

x . y = 3x− 2y.

Then the map f : Z8 → Z8 given by f(x) = ax + b is a Legendrian map for
(a, b) ∈ {(1, 0), (1, 4), (5, 0), (5, 4)}.
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Example 6. Consider the Legendrian rack (Z8, ., f) with x . y = 3x− 2y and
f(x) = 5x + 4. Any map ψ : Z8 → Z8 given by ψ(x) = ax + a − 1, where
a ∈ Z8, gives a Legendrian rack endomorphism. Furthermore, if a is invertible
in Z8, then ψ is an automorphism.

Example 7. Consider Z10 as a rack with operation

x . y = 3x− 2y.

Since the only square roots of 1 are 1 and 9, the condition (1− a)s = 0 is only
satisfied for a = 1; then sb = 0 requires b = 5, and we check that (a + 1)b =
(1 + 1)5 = 0, (1−a)s = (1−1)(−2) = 0 and (1− t)b = (1−3)5 = (−2)5 = 0 so
the only Legendrian map of the form f(x) = ax+b on this rack is f(x) = x+5.

We can define racks and quandles without algebraic formulas by listing their
operation tables in the from of a matrix. Specifically, we can specify an oper-
ation . on the set {1, 2, . . . , n} with a matrix M whose entry in row j column
k is j . k.

Example 8. Up to isomorphism, there are six racks of three elements. For each
of these racks, we list the possible Legendrian maps f ∈ S3 in cycle notation
in the table below.

M f 1 1 1
2 2 2
3 3 3

 f = (), (12), (13), (23)

 1 1 1
3 2 2
2 3 3

 f = (), (23)

 1 3 2
3 2 1
2 1 3

 f = ()

M f 2 2 2
3 3 3
1 1 1

 (123)

 2 2 2
1 1 1
3 3 3

 −

 2 2 1
1 1 2
3 3 3

 −

In the previous examples, we note that only quandles seem to have Legen-
drian maps. Our next example shows that non-quandle racks can have Legen-
drian maps.

Example 9. The constant action rack structure on the set {1, 2, 3, 4} given
by x . y = σ(x), where (in cycle notation) σ = (12)(34), has two Legendrian
maps, f1 = (1324) and f2 = (1423) as can be verified easily. For example,
f2

1 = f2
2 = (12)(34) = σ, so axiom (I) becomes x = σ2(x), axiom (II) becomes

fiσ = σfi for (i = 1, 2) and axiom (III) becomes a tautology.

The following example of a rack satisfies the conditions of Proposition 3
where the map f is an involution.



634 J. CENICEROS, M. ELHAMDADI, AND S. NELSON

Example 10. Consider Z4 as a rack with operation

x . y = 3x+ 2y.

The map f(x) = −x makes this rack into a Legendrian rack.

The following example of a rack that is not a quandle satisfies the conditions
of Proposition 3 where the map f is not an involution.

Example 11. Consider Z49 as a rack with operation

x . y = 2x.

The map f(x) = 5x makes this rack into a Legendrian rack.

Example 12. Of the 19 isomorphism classes of racks with four elements, we
find that 11 have nonempty sets of Legendrian structures. These are:

M f M f
1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

 ()


2 2 1 2
4 4 2 4
3 3 3 3
1 1 4 1

 (124)


2 2 2 2
3 3 3 3
1 1 1 1
4 4 4 4

 (123)


2 2 2 3
3 3 3 1
1 1 1 2
4 4 4 4

 (123)


1 1 4 3
2 2 2 2
4 3 3 1
3 4 1 4

 ()


1 3 1 1
2 2 2 2
3 4 3 3
4 1 4 4

 ()


1 4 4 1
3 2 2 3
2 3 3 2
4 1 1 4

 (23), (14), (14)(23)


2 2 2 2
1 1 1 1
4 4 4 4
3 3 3 3

 (1324), (1423)


1 1 4 1
2 2 2 2
3 3 3 3
4 4 1 4

 (), (14)


1 3 1 3
2 2 2 2
3 1 3 1
4 4 4 4

 (13), (24), (13)(24), ()


1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

 (12)(34), (13)(24), (14)(23),
(34), (23), (24), (12), (13), (14), ().

5. Distinguishing Legendrian knots using Legendrian racks

In this section we use coloring of Legendrian knot diagrams to distinguish
some Legendrian knots. In the first three examples we respectively distinguish
between the unknot and its positive stabilization, the trefoil and its negative
stabilization and also the trefoil and its positive stabilization. The last two
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examples deal with distinguishing connected sum of Legendrian knots and dis-
tinguishing the two Legendrian knots of topological type 62.

Note that crossing information is not denoted in the following diagrams
since in a front projection of a Legendrian knot only contains crossings were
the overstrand has a smaller slope than the understrand:

Now we start with the following example distinguishing between the unknot
and its positive stabilization.

Example 13. Consider the following diagrams of the unknot and its positive
stabilization. A coloring of the diagram of the unknot by (X, ., f) gives the
condition f2(x) = x, while a coloring of the diagram of its positive stabilization
by (X, ., f) gives the condition f4(x) = x. Now by choosing (X, ., f) to be the
Legendrian rack given in Example 9 and since f4 is the identity map while f2

is not, the two knots are thus distinguished by their sets of colorings.

f(x)

f2(x) = x
f4(x) = x

f(x)

f2(x)

f3(x)

The following example shows that Legendrian rack colorings distinguish the
trefoil from its positive stabilization.

Example 14. Consider the following diagrams of the trefoil and its negative
stabilization. A coloring of the diagram of the trefoil by (X, ., f) gives the
following conditions at the crossings:

x . f(y) = f2(z),

y . f(z) = f2(x),

z . f(x) = f2(y)

while a coloring of the diagram of its negative stabilization by (X, ., f) gives
the following conditions at the crossings:

x . f(y) = f4(z),

y . f(z) = f2(x),

z . f(x) = f2(y).
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Now by choosing (X, ., f) to be the Legendrian rack given in Example 9, the
system of equations for the trefoil has a solution x = y = z, while the system
of equations for its positive stabilization has no solution, thus the two knots
are distinguished by their sets of colorings.

f(y) f2(z)x f(y)

f2(y)f(x)

f2(x)

z

f(z)y

f(y)
f4(z)x f(y)

f2(y)f(x)

f2(x)

z

f(z)
y

f2(z)

f3(z)

The following example distinguishes between the trefoil and its positive sta-
bilization.

Example 15. Consider the following diagrams of the trefoil and its positive
stabilization.

f(y) f2(z)x f(y)

f2(y)f(x)

f2(x)

z

f(z)y

f(y) f2(z)
x

f(y)

f2(y)

f(x)

f2(x)

f3(x)

f4(x)

z

f(z)y

As in the previous example, a coloring of the diagram of the trefoil by
(X, ., f) gives the following conditions at the crossings:

x . f(y) = f2(z),

y . f(z) = f2(x),

z . f(x) = f2(y)

while a coloring of the diagram of its negative stabilization by (X, ., f) gives
the following conditions at the crossings:

x . f(y) = f2(z),

y . f(z) = f4(x),

z . f3(x) = f2(y).

Now by choosing (X, ., f) to be the one given in the top right corner of the
chart in Example 8, that is x.y = x+1 and f = (123), the system of equations
for the trefoil has a solution with x = 1, y = 2 and z = 3, while this is not a
solution to the system of equations for its positive stabilization, thus the two
knots are distinguished by their sets of colorings.

The following example distinguishes between connected sums of Legendrian
knots.
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Example 16. Lets call the knot diagrams on the left and on the right of the
Figure in Example 14 respectively K1 and K2. Now we use the following 4
element rack with the map f to distinguish the two connected sums K1#K1

and K1#K2. 
2 2 2 2
1 1 1 1
4 4 4 4
3 3 3 3

 and the map f = (1423).

The coloring of the connected sum K1#K1

f(z) u f2(w)

f2(x) v

z

f(x)

x

f(y)

yf2(z)

f(u)f(v)

f2(v)

w

f(w)

gives the following equations:

x . y = f2(z), z . f(x) = f(y),
u . f(z) = f2(x), v . u = f2(w),
w . f(v) = f(u), y . f(w) = f2(v).

Axiom (III) of Definition 4 simplifies this system to become:

x . y = f2(z), z . x = f(y),
u . z = f2(x), v . u = f2(w),
w . v = f(u), y . w = f2(v).

We prove that this system doesn’t have a solution: Let σ = (12)(34) be the per-
mutation on {1, 2, 3, 4} so that the rack operation becomes x . y = σ(x),∀x, y.
First notice that f2 = σ and thus the maps f and σ commute. Then the
first equation, x . y = f2(z), of the system gives z = x, while the equation
z . x = f(y) implies y = f(z) = f(x). The equation u . z = f2(x) gives u = x,
while the equation v . u = f2(w) implies v = w. The equation w . v = f(u)
gives f(w) = u and the equation y . w = f2(v) implies y = v, thus x = f(y),
implying x = f2(x) but this is impossible since f has no fixed point. Now the
coloring of K1#K2 in the figure

f(z) u f4(w)

f2(x) v

z

f(x)

x

f(y)

yf2(z)

f(u)f(v)

f2(v)

w

f(w)

f2(w)

f3(w)
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gives the following equations:

x . y = f2(z), z . f(x) = f(y),
u . f(z) = f2(x), v . u = f4(w),
w . f(v) = f(u), y . f(w) = f2(v).

Axiom (III) of Definition 4 simplifies this set of to become:

x . y = f2(z), z . x = f(y),
u . z = f2(x), v . u = f4(w),
w . v = f(u), y . w = f2(v).

One checks easily that setting x = z = u = 1, y = v = 4 and w = 3 give a
solution of this system of equations and thus a coloring of K1#K2. Now since
K1#K1 doesn’t have a coloring, we conclude that the two Legendrian knots
K1#K1 and K1#K2 are distinct.

References

[1] J. S. Carter, M. Elhamdadi, and M. Saito, Homology theory for the set-theoretic Yang-

Baxter equation and knot invariants from generalizations of quandles, Fund. Math. 184

(2004), 31–54. https://doi.org/10.4064/fm184-0-3
[2] J. Ceniceros and S. Nelson, Virtual Yang-Baxter cocycle invariants, Trans. Amer. Math.

Soc. 361 (2009), no. 10, 5263–5283. https://doi.org/10.1090/S0002-9947-09-04751-5
[3] Y. Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002), no. 3,

441–483. https://doi.org/10.1007/s002220200212

[4] Z. Cheng, M. Elhamdadi, and B. Shekhtman, On the classification of topological quan-
dles, Topology Appl. 248 (2018), 64–74. https://doi.org/10.1016/j.topol.2018.08.

011

[5] M. Elhamdadi, N. Fernando, and B. Tsvelikhovskiy, Ring theoretic aspects of quandles,
J. Algebra 526 (2019), 166–187. https://doi.org/10.1016/j.jalgebra.2019.02.011

[6] M. Elhamdadi, J. Macquarrie, and R. Restrepo, Automorphism groups of quan-

dles, J. Algebra Appl. 11 (2012), no. 1, 1250008, 9 pp. https://doi.org/10.1142/

S0219498812500089

[7] M. Elhamdadi and E.-K. M. Moutuou, Foundations of topological racks and quandles,

J. Knot Theory Ramifications 25 (2016), no. 3, 1640002, 17 pp. https://doi.org/10.
1142/S0218216516400022

[8] M. Elhamdadi and S. Nelson, Quandles—an introduction to the algebra of knots, Stu-
dent Mathematical Library, 74, American Mathematical Society, Providence, RI, 2015.

https://doi.org/10.1090/stml/074

[9] Y. Eliashberg, Invariants in contact topology, Doc. Math. 1998 (1998), Extra Vol. II,
327–338.

[10] Y. Eliashberg and M. Fraser, Classification of topologically trivial Legendrian knots, in

Geometry, topology, and dynamics (Montreal, PQ, 1995), 17–51, CRM Proc. Lecture
Notes, 15, Amer. Math. Soc., Providence, RI, 1998. https://doi.org/10.1090/crmp/

015/02

[11] , Topologically trivial Legendrian knots, J. Symplectic Geom. 7 (2009), no. 2,

77–127. http://projecteuclid.org/euclid.jsg/1239974381

[12] Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom.
Funct. Anal. 2000, Special Volume, Part II, 560–673. https://doi.org/10.1007/978-

3-0346-0425-3_4

https://doi.org/10.4064/fm184-0-3
https://doi.org/10.1090/S0002-9947-09-04751-5
https://doi.org/10.1007/s002220200212
https://doi.org/10.1016/j.topol.2018.08.011
https://doi.org/10.1016/j.topol.2018.08.011
https://doi.org/10.1016/j.jalgebra.2019.02.011
https://doi.org/10.1142/S0219498812500089
https://doi.org/10.1142/S0219498812500089
https://doi.org/10.1142/S0218216516400022
https://doi.org/10.1142/S0218216516400022
https://doi.org/10.1090/stml/074
https://doi.org/10.1090/crmp/015/02
https://doi.org/10.1090/crmp/015/02
http://projecteuclid.org/euclid.jsg/1239974381
https://doi.org/10.1007/978-3-0346-0425-3_4
https://doi.org/10.1007/978-3-0346-0425-3_4


LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS 639

[13] J. B. Etnyre, Introductory lectures on contact geometry, in Topology and geometry of

manifolds (Athens, GA, 2001), 81–107, Proc. Sympos. Pure Math., 71, Amer. Math.

Soc., Providence, RI, 2003. https://doi.org/10.1090/pspum/071/2024631
[14] , Legendrian and transversal knots, in Handbook of knot theory, 105–185, Elsevier

B. V., Amsterdam, 2005. https://doi.org/10.1016/B978-044451452-3/50004-6
[15] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifi-

cations 1 (1992), no. 4, 343–406. https://doi.org/10.1142/S0218216592000203

[16] H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathe-
matics, 109, Cambridge University Press, Cambridge, 2008. https://doi.org/10.1017/

CBO9780511611438

[17] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23
(1982), no. 1, 37–65. https://doi.org/10.1016/0022-4049(82)90077-9

[18] D. Kulkarni and V. Prathamesh, On rack Invariants of Legendrian Knots,

arXiv:1706.07626, 2017.
[19] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982),

no. 1, 78–88, 160.

[20] S. Nelson, Classification of finite Alexander quandles, Topology Proc. 27 (2003), no. 1,
245–258.
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