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Abstract. We introduce a notion of ternary distributive algebraic structure, give exam-

ples, and relate it to the notion of a quandle. Classification is given for low order structures

of this type. Constructions of such structures from 3-Lie algebras are provided. We also

describe ternary distributive algebraic structures coming from groups and give examples

from vector spaces whose bases are elements of a finite ternary distributive set. We intro-

duce a cohomology theory that is analogous to Hochschild cohomology and relate it to a

formal deformation theory of these structures.

1. Introduction

Ternary operations, which are natural generalizations of binary operations, ap-
pear in many areas of mathematics and physics. An example of a ternary oper-
ation of an associative type is a map µ on a set X satisfying µ(µ(x, y, z), u, v) =
µ(x, µ(y, z, u), v) = µ(x, y, µ(z, u, v)). Algebras with these multiplications are called
totally associative ternary algebras and have been considered, for example, in [3, 4].
The first ternary algebraic structure given in an axiomatic form appeared in 1949
in the work of N. Jacobson [24]. He considered a Lie bracket [x, y] in a Lie alge-
bra L and a subspace that is closed with respect to [[x, y], z] which he called a Lie
triple system. Since then, many works were devoted to ternary structures and their
cohomologies (see for example [22, 10, 26, 27, 34, 36]). A typical example of an
associative triple system is the ternary algebra of rectangular matrices introduced
by M. R. Hestenes [23] where the ternary product is AB∗C (the ∗ stands for the

* Corresponding Author.
Received February 27, 2015; accepted June 17, 2015.
2010 Mathematics Subject Classification: 20B25, 20B20.
Key words and phrases: Ternary, distributivity, quandle, cohomology, deformation.

1



2 M. Elhamdadi, M. Green and A. Makhlouf

conjugate transpose). In theoretical physics, the progress of quantum mechanics,
Nambu mechanics, and the work of S. Okubo [31, 32] allowed an important develop-
ment in the theory of ternary algebras (see [1, 2, 5] for example). Furthermore, this
generalization of Hamiltonian systems by Nambu generated some profound studies
of Nambu-Lie ternary algebras, which are generalizations of Lie algebras. The al-
gebraic formulation of this structure was achieved by Fillipov [19] and Takhtajan
[35] based on some generalization of the Jacobi identity.

Distributivity in algebraic structures appeared in many contexts, such as in
the quasigroup theory, the semigroup theory, and the algebraic knot theory. The
notion of a quandle (involutive quandle) appeared first as an abstraction of the
notion of symmetric transformation, while the racks were studied in the context of
the conjugation operation in a group. Around 1982, Joyce and Matveev introduced
independently the notion of a quandle. They associated a quandle to each oriented
knot called the knot quandle. Since then quandles and racks have been investigated
by topologists in order to construct knot and link invariants and their higher ana-
logues. We aim in this paper to extend these notions to ternary operations. This
paper is organized as follows. In Section 2, we will review the basics on quandles
and introduce ternary distributive structures and more generally n-ary distributive
operations. We will define naturally the notion of ternary quandles and racks. We
will provide some examples and describe some properties. In section 3, we will
give the classification of ternary quandles of low order up to isomorphisms and we
describe ternary distributive algebraic structures coming from groups. In Section 4,
we will provide some constructions from ternary bialgebras and 3-Lie algebras. In
Section 5 we will describe a low dimensional cohomology theory of ternary distribu-
tive bialgebra that fits with a deformation theory of ternary distributive operations.
Section 6 is dedicated to a deformation theory of a weak ternary distributive bial-
gebra and in particular ternary quandles. In the appendix we give a classification
of ternary distributive linear maps that are compatible with comultiplication.

2. Quandles and Ternary Distributive Structures

We begin this section by reviewing the basics of quandles and give examples in
order to introduce their analogues in the ternary setting.

A quandle, X, is a set with a binary operation (a, b) 7→ a ∗ b such that

(i) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

(ii) For any a, b ∈ X, there is a unique x ∈ X such that a = x ∗ b.

(iii) For any a ∈ X, a ∗ a = a.

Axiom (ii) states that for each u ∈ X, the map Ru : X → X with Ru(x) := x ∗ u
(right multiplication by u) is a bijection. A rack is a set with a binary operation
that satisfies (i) and (ii).
Racks and quandles have been studied in, for example, [18, 25, 28]. The axioms of
a quandle (i), (ii) and (iii) above correspond respectively to the Reidemeister moves
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of type III, II, and I. For more details, see [18], for example.
Here are some typical examples of quandles.

– Any set X with the operation x ∗ y = x for any x, y ∈ X is a quandle called
the trivial quandle. The trivial quandle of n elements is denoted by Tn.

– A group X = G with n-fold conjugation as the quandle operation: a ∗ b =
bnab−n.

– Let n be a positive integer. For elements i, j ∈ Zn (integers modulo n), define
i ∗ j ≡ 2j− i (mod n). Then ∗ defines a quandle structure called the dihedral
quandle, Rn. This set can be identified with the set of reflections of a regular
n-gon with conjugation as the quandle operation.

– Any Λ(= Z[t, t−1])-module M is a quandle with a∗b = ta+(1− t)b, a, b ∈M ,
called an Alexander quandle. Furthermore for a positive integer n, a mod-n
Alexander quandle Zn[t, t−1]/(h(t)) is a quandle for a Laurent polynomial
h(t). The mod-n Alexander quandle is finite if the coefficients of the highest
and lowest degree terms of h are units in Zn.

Now we introduce the analogous notion of a quandle in the ternary setting.

Definition 2.1. Let Q be a set and T : Q × Q × Q → Q be a ternary operation
on Q. The operation T is said to be right distributive if it satisfies the following
condition for all x, y, z, u, v ∈ Q
(2.1)

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)). (right distributivity)

Remark 2.2. Note that one can similarly define the notions of left distributive as
well as middle distributive. Through the rest of this paper, we will use distributive
to refer to specifically right distributive.
Using the diagonal map D : Q → Q × Q × Q = Q×3 such that D(x) = (x, x, x),
equation (2.1) can be written, as a map from Q×5 to Q, in the following form

(2.2) T ◦ (T × id× id) = T ◦ (T × T × T ) ◦ ρ ◦ (id× id× id×D ×D).

where id stands for the identity map and in the whole paper we denote by ρ :
Q×9 → Q×9 the map defined as ρ = p6,8 ◦ p3,7 ◦ p2,4 where pi,j is the transposition
ith and jth elements, i.e.

(2.3) ρ(x1, · · · , x9) = (x1, x4, x7, x2, x5, x8, x3, x6, x9).

Equation (2.2) as a new form of equation (2.1) will be used in section in the context
of ternary bialgebras.

Definition 2.3. Let T : Q ×Q ×Q → Q be a ternary operation on a set Q. The
pair (Q,T ) is said to be ternary shelf if T satisfies identity (2.1). If, in addition,
for all a, b ∈ Q, the map Ra,b : Q → Q given by Ra,b(x) = T (x, a, b) is invertible,
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then (Q,T ) is said to be ternary rack. If further T satisfies T (x, x, x) = x, for all
x ∈ Q, then (Q,T ) is called a ternary quandle.

The figure below is a diagrammatic representation of equation (1).

Example 2.4. Let (Q, ∗) be a quandle and define a ternary operation on Q by
T (x, y, z) = (x ∗ y) ∗ z,∀x, y, z ∈ Q. It is straightforward to see that (Q,T ) is a
ternary quandle. Note that in this case Ra,b = Rb ◦ Ra. We will say that this
ternary quandle is induced by a (binary) quandle.

Example 2.5. Let (M, ∗) be an Alexander quandle, then the ternary quandle
coming from M has the operation T (x, y, z) = t2x+ t(1− t)y + (1− t)z.

Example 2.6. Let M be any Λ-module where Λ = Z[t±1, s]. The operation
T (x, y, z) = tx + sy + (1 − t − s)z defines a ternary quandle structure on M . We
call this an affine ternary quandle.

Example 2.7. Consider Z8 with the ternary operation T (x, y, z) = 3x + 2y + 4z.
This affine ternary quandle is not induced by an Alexander quandle structure since
3 is not a square in Z8.

Example 2.8. Any group G with the ternary operation T (x, y, z) = xy−1z gives
an example of ternary quandle. This is called heap (sometimes also called a groud)
of the group G.

A morphism of ternary quandles is a map φ : (Q,T ) → (Q′, T ′) such that

φ(T (x, y, z)) = T ′(φ(x), φ(y), φ(z)).
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A bijective ternary quandle endomorphism is called ternary quandle automorphism.
Therefore, we have a category whose objects are ternary quandles and morphisms
as defined above.

Definition 2.9. A ternary rack (resp. ternary quandle) (Q,T ) is said to be
pointed if there is a distinguished element denoted 1 ∈ Q such that, for all
x, y ∈ Q,T (x, 1, 1) = x, and T (1, x, y) = 1.

As in the case of the binary quandle there is a notion of medial ternary quandle.

Definition 2.10.([6]) A ternary quandle (Q,T ) is said to be medial if for all
a, b, c, d, e, f, g, h, k ∈ Q, the following identity is satisfied

T (T (a, b, c), T (d, e, f), T (g, h, k)) = T (T (a, d, g), T (b, e, h), T (c, f, k)).

This definition of mediality can be written in term of the following commutative
diagram

Q× · · · ×Q︸ ︷︷ ︸
9 times

Q×Q×Q

Q Q×Q×Q

Q× · · · ×Q︸ ︷︷ ︸
9 times

ρ

**UUUUUUUT×T×T

uujjjjjjj

T

��

T×T×T

��
Too

Where ρ = (24)(37)(68) is the permutation of the set {1, · · ·, 9} defined above.

Example 2.11. Every affine ternary quandle is medial.

We generalize the notion of ternary quandle to n-ary setting.

Definition 2.12. An n-ary distributive set is a pair (Q,T ) where Q is a set and
T : Q×n → Q is an n-ary operation satisfying the following conditions:

1.

T (T (x1, · · · , xn), u1, · · · , un−1) =
T (T (x1, u1, · · · , un−1), T (x2, u1, · · · , un−1), · · · , T (xn, u1, · · · , un−1)),

∀xi, ui ∈ Q (distributivity).

2. For all a1, · · · , an−1 ∈ Q, the map Ra1,··· ,an−1 : Q→ Q given by

Ra1,··· ,an−1(x) = T (x, a1, · · · , an−1)

is invertible.
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3. For all x ∈ Q,
T (x, · · · , x) = x.

If T satisfies only condition(1), then (Q,T ) is said to be an n-ary shelf. If both
conditions (1) and (2) are satisfied then (Q,T ) is said to be an n-ary rack. If all
three conditions (1), (2) and (3) are satisfied then (Q,T ) is said to be an n-ary
quandle.

Definition 2.13. An n-ary quandle (Q,T ) is said to be medial if for all xij ∈
Q, 1 ≤ i, j ≤ n, the following identity is satisfied

T (T (x11, x12, · · · , x1n), T (x21, x22, · · · , x2n), · · · , T (xn1, xn2, · · · , xnn)) =
T (T (x11, x21, · · · , xn1), T (x12, x22, · · · , xn2), · · · , T (x1n, x2n, · · · , xnn)).

3. Classification of Ternary Quandles of Low Orders

We give in this section the classification of ternary quandles up to isomorphisms.
We provide all ternary quandles of order 2 and 3. Moreover we describe ternary
distributive structures coming from groups. Recall that a ternary quandle is a
pair (Q,T ), where Q is a set and T a ternary operation, satisfying the following
conditions

(I) T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)), for all x, y, z, u, v ∈ Q,

(II) for all a, b ∈ Q, the map Ra,b : Q → Q given by Ra,b(x) = T (x, a, b) is
invertible,

(III) for all x ∈ Q, T (x, x, x) = x.

3.1 Ternary quandles of order two

We have the following lemma which states that there are two non-isomorphic
ternary quandle structures on a set of two elements.

Lemma 3.1. In size two, all ternary quandles are affine, and are divided into two
isomorphism classes, represented by the trivial ternary quandle, and the one with
T (x, y, z) = x+ y + z (mod 2).

Proof. Let Q = {1, 2} and T a ternary quandle operation on Q. Then we have
T (1, 1, 1) = 1 and T (2, 1, 1) = 2. Similarly, we have T (2, 2, 2) = 2 and T (1, 2, 2) = 1.
Now we need to choose a value for T (1, 1, 2). We distinguish two cases:
Case 1: Assume T (1, 1, 2) = 1, this implies T (2, 1, 2) = 2 (by second axiom). We
claim that in this case T (1, 2, 1) can not equal 2, otherwise T (2, 2, 1) = 1 (again
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axiom (II)). Now use axiom (I) of right-self-distributivity to get T (T (2, 1, 2), 2, 1) =
T (T (2, 2, 1), T (1, 2, 1), T (2, 2, 1)) implying that T (2, 2, 1) = T (1, 2, 1) but this con-
tradicts the bijectivity of axiom (II). Then T (1, 2, 1) = 1 and T (2, 2, 1) = 2. This
ends the proof.
Case 2: Assume T (1, 1, 2) = 2, this implies T (2, 1, 2) = 1 (by second axiom). As
in case 1, we prove similarly that T (1, 2, 1) can not equal 1, thus T (1, 2, 1) = 2 and
T (2, 2, 1) = 1. Now, the only non-trivial bijection of the set {1, 2} is the transposi-
tion sending 1 to 2. It’s easy to see that this transposition is not a homomorphism
between the two ternary quandles given in case 1 and case 2. 2

3.2 Ternary quandles of order three

To help classify the ternary quandles two observations are useful. First we note
that every ternary quandle is related to some (binary) quandle.

Remark 3.2. If (Q,T ) is a ternary quandle, then (Q, ∗), where x ∗ y = T (x, y, y)
is a (binary) quandle.

We shall refer to this related quandle as the associated quandle. We now consider
how the relation between associated quandles extends to ternary quandles.

Lemma 3.3. Let (Q,T ) be a ternary quandle, and (Q, ∗), be the associated quandle
defined by x ∗ y = T (x, y, y). If (R, ∗′) is a quandle such that (Q, ∗) ∼= (R, ∗′), then
there exists a ternary quandle (R, T ′) ∼= (Q,T ) such that x ∗′ y = T ′(x, y, y).

Proof. This is easily shown by setting T ′(x, y, z) = φ(T (φ−1(x), φ−1(y), φ−1(z)))
where φ : Q→ R is an isomorphism from (Q, ∗) to (R, ∗′). 2

With these facts we now see that we may limit the task of generating isomorphi-
cally distinct ternary quandles by generating them based on isomorphically distinct
quandles. We developed a simple program using the conditions defining a ternary
quandle to compute all ternary quandles of order 3. The results of which we used
to obtain the following

Lemma 3.4. There are 31 isomophically distinct ternary quandles of order 3. Six
of these are affine: the trivial ternary quandle T0, as well as two more with trivial
associated quandle, T14 defined by T (x, y, z) = x+ y + 2z (mod 3), and T15 defined
by T (x, y, z) = x+ 2y + z, as wells as three with the connected associated quandle,
T1 defined by T (x, y, z) = 2x + 2z, T2 defined by T (x, y, z) = 2x + y + z, and T5

defined by T = 2x+ 2y.

Additionally we found that 14 were connected, including the non-trival affine
structures, as well as the remaining structures with the connected quandle as their
associated quandle and 6 with the trivial associated quandle T6, T7, T10, T12, T13 and
T16.

Since for each fixed a, b, the map x 7→ T (x, a, b) is a permutation, then in
the following table we describe all ternary quandles of order three in terms of the
columns of the Cayley table. Each column is a permutation of the elements and is
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z=1 z=2 z=3
1 2 3 2 1 1 3 1 1
2 1 2 1 2 3 2 3 2
3 3 1 3 3 2 1 2 3

Table 1: Cayley representation of ternary quandle T12

T z=1 z=2 z=3
T12 (1),(12),(13) (12),(1),(23) (13),(23),(1)

Table 2: Permutation representation of ternary quandle T12

described in standard notation that is by explicitly writing it in terms of products
of disjoint cycles. Thus for a given z we give the permutations resulting from fixing
y = 1, 2, 3. For example, the ternary set T12(x, y, z) with the Cayley Table 1 will be
represented with the permutations (1), (12), (13); (12), (1), (23); (13), (23), (1). This
will appear on Table 3 as shown in Table 2.

Additionally we organize the table based on the associated quandle, given in
similar permutation notation.

3.3 Ternary distributive structures from groups

We search for ternary distributive structures coming from groups. We
have the following necessary condition.

Lemma 3.5. Let x, y, z be three fixed elements in a group G. Let w(x, y, z) =
ae1

1 a
e2
2 ...a

en
n such that ai ∈ {x, y, z} and ei = ±1. If w is defined such that (I)∑n

i=1 ei = 1, (II) there exists a unique i such that ai = x, and (III) w(x, y, z)
satisfies equation (2.1) of Definition , then w defines a ternary quandle over
the group G.

The condition
∑n

i=1 ei = 1 is a result of axiom (III) and the condition∑
i∈I ei = ±1 is a result of axiom (II).
Using the sufficient conditions, we found three families of group words

defining ternary quandles over G. Words of the form x(a−1b)n, (ab−1)nx and
wxw−1, where a, b ∈ {y, z}, and w is any word over {y, z}, clearly satisfy
the first and second condition and by reducing the words w(w(x, y, z), u, v)
and w(w(x, u, v), w(y, u, v), w(z, u, v), we easily obtain the third condition.

Remark 3.6. In [29], the author investigated some ternary operations com-
ing from coloring the four regions around crossings of classical knot diagrams.
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Ternary Distributive Sets With Associated Quandle (1),(1),(1)
T z=1 z=2 z=3 T z=1 z=2 z=3
T0 (1),(1),(1) (1),(1),(1) (1),(1),(1) T1 (1),(1),(1) (1),(1),(1) (12),(12),(1)
T2 (1),(1),(1) (1),(1),(23) (1),(23),(1) T3 (1),(1),(1) (23),(1),(1) (23),(1),(1)
T4 (1),(1),(1) (23),(1),(23) (23),(23),(1) T5 (1),(1),(12) (1),(1),(12) (12),(12),(1)
T6 (1),(1),(123) (123),(1),(1) (1),(123),(1) T7 (1),(1),(132) (132),(1),(1) (1),(132),(1)
T8 (1),(1),(13) (13),(1),(13) (13),(1),(1) T9 (1),(23),(23) (23),(1),(23) (23),(23),(1)
T10 (1),(23),(23) (13),(1),(13) (12),(12),(1) T11 (1),(12),(12) (12),(1),(12) (1),(1),(1)
T12 (1),(12),(13) (12),(1),(23) (13),(23),(1) T13 (1),(123),(123) (123),(1),(123) (123),(123),(1)
T14 (1),(123),(132) (132),(1),(123) (123),(132),(1) T15 (1),(132),(123) (123),(1),(132) (132),(123),(1)
T16 (1),(13),(12) (23),(1),(12) (23),(13),(1)

Ternary Distributive Sets With Associated Quandle (1),(1),(12)
T z=1 z=2 z=3 T z=1 z=2 z=3
T0 (1),(1),(1) (1),(1),(1) (1),(1),(12) T1 (1),(1),(1) (1),(1),(1) (12),(12),(12)
T2 (1),(1),(12) (1),(1),(12) (1),(1),(12) T3 (1),(1),(12) (1),(1),(12) (12),(12),(12)
T4 (1),(12),(1) (12),(1),(1) (1),(1),(12) T5 (1),(12),(1) (12),(1),(1) (12),(12),(12)
T6 (1),(12),(12) (12),(1),(12) (1),(1),(12) T7 (1),(12),(12) (12),(1),(12) (12),(12),(12)

Ternary Distributive Sets With Associated Quandle (23),(13),(12)
T z=1 z=2 z=3 T z=1 z=2 z=3
T0 (23),(1),(1) (1),(13),(1) (1),(1),(12) T1 (23),(23),(23) (13),(13),(13) (12),(12),(12)
T2 (23),(12),(13) (12),(13),(23) (13),(23),(12) T3 (23),(123),(132)(132),(13),(123)(123),(132),(12)
T4 (23),(132),(123)(123),(13),(132)(132),(123),(12) T5 (23),(13),(12) (23),(13),(12) (23),(13),(12)

Table 3: Isomorphism classes of ternary quandles of order 3

We mention that the axioms satisfied by his ternary operations involve only
four arguments while our ternary distributive operation axiom involves five
arguments (see equation (2.1)). Even though, the ternary operation of the
heap of a group T (x, y, z) = xy−1z happened to be an example for both
his operations and ours, the difference is that any permutation of the three
letters x, y, z in this operation is also an example in his context, while in
our situation the ternary operation obtained by the transposition of x and
y that is T (x, y, z) = yx−1z is not distributive operation. This shows that
his ternary operations and ours are different.

4. Constructions from Ternary Bialgebras and 3-Lie Algebras

We provide in this section some constructions of ternary shelves involving
ternary bialgebra structures and 3-Lie algebras.

4.1 Ternary bialgebras

We start by recalling definitions of ternary algebras, coalgebras and bial-
gebras. See [6, 16, 21, 37] for references about ternary bialgebras.

Definition 4.1. A ternary K-algebra is a triple (A,µ, η) where A is a vector
space over a field K with a multiplication µ : A ⊗ A ⊗ A → A and a unit
η : K → A that are linear maps such that the following associativity identity
is satisfied

(4.1) µ ◦ (µ⊗ id⊗ id) = µ ◦ (id⊗ µ⊗ id) = µ ◦ (id⊗ id⊗ µ)
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and the following property of the unit is also satisfied

µ ◦ (η ⊗ η ⊗ id) = µ ◦ (η ⊗ id⊗ η) = µ ◦ (id⊗ η ⊗ η) = id.

The triple (A,µ, η) defines a weak ternary K-algebra if, instead of identity
(4.1), the following weak associativity identity holds

(4.2) µ ◦ (µ⊗ id⊗ id) = µ ◦ (id⊗ id⊗ µ)

Ternary coalgebras are defined similarly by changing the directions of the
arrows in the previous definition. Precisely,

Definition 4.2. A vector space A is a ternary K-coalgebra if it has a
coalgebra comultiplication ∆ that is a linear map ∆ : A → A ⊗ A ⊗ A
satisfying the following coassociativity identity:

(∆⊗ id⊗ id) ◦∆ = (id⊗∆⊗ id) ◦∆ = (id⊗ id⊗∆) ◦∆ = id.

The ternary coalgebra is said to be counital if there exists a map ε : A→ K
such that

(4.3) (ε⊗ id⊗ id) ◦∆ = (id⊗ ε⊗ id) ◦∆ = (id⊗ id⊗ ε) ◦∆.

The triple (A,∆, ε) defines a ternary weak K-coalgebra if, instead of identity
(4.3), the following weak coassociativity identity holds

(4.4) (∆⊗ id⊗ id) ◦∆ = (id⊗ id⊗∆) ◦∆.

A linear map f : A → A is called compatible with a comultiplication and
the counit ε if

∆ ◦ f = (f ⊗ f ⊗ f) ◦∆ and εf = ε

Definition 4.3. We say that a ternary operation µ : A ⊗ A ⊗ A → A is
compatible with a comultiplication ∆ if and only if

(4.5) ∆ ◦ µ = (µ⊗ µ⊗ µ) ◦ ρ ◦ (∆⊗∆⊗∆),

where ρ : A⊗9 → A⊗9 is defined in equation (2.3).

The following is a figure of compatibility of ternary operation with co-
multiplication
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Definition 4.4. A ternary bialgebra is a quintuplet (A,µ, η,∆, ε) such that (A,µ, η)
is a ternary algebra, (A,∆, ε) is a ternary coalgebra and the multiplication µ and the
unit η are coalgebra morphisms (equivalent to ∆ and ε being algebra morphisms).

Example 4.5.

• Group algebras: Let G be a (multiplicative) group, and K[G] be the group
algebra. Then A = K[G] becomes a non-unital weak ternary bialgebra with
the multiplication defined as T (g, h, k) = gh−1k, the comultiplication and
counit are given respectively by ∆(g) = g⊗ g⊗ g and ε(g) = 1. This ternary
algebra is weak and not unital.

• Function algebra on groups: Let G be a finite group. Using KG×G×G ∼=
KG⊗KG⊗KG, the set KG of functions from G to K has a ternary pointwise
multiplication and a ternary comultiplication ∆ : KG → KG×G×G given by
∆(f)(u ⊗ v ⊗ w) = f(uvw). Now KG has basis (the characteristic function)
δg : G → K defined by δg(x) = 1 if x = g and zero otherwise. We have
∆(δh) =

∑
uvw=h

δu ⊗ δv ⊗ δw.

4.2 3-Lie algebras

In the following we recall the definition of a 3-Lie algebra and show how to
derive a ternary distributive operation from it. For further properties and results
about 3-Lie algebras, we refer the reader to [1, 2, 5, 15, 19, 31, 32].

Definition 4.6. A 3-Lie algebra is a K-vector space L together with a skewsym-
metric ternary operation [·, ·, ·] satisfying, for all x1, · · · , x5 ∈ L,

[[x1, x2, x3], x4, x5] = [[x1, x4, x5], x2, x3] + [x1, [x2, x4, x5], x3] + [x1, x2, [x3, x4, x5]].
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Given a 3-Lie algebra L, we can construct a ternary coalgebra N = K ⊕ L by
setting for all x ∈ L,

(4.6) ∆(x) = x⊗1⊗1+1⊗x⊗1+1⊗1⊗x, ∆(1) = 1⊗1⊗1, ε(1) = 1 and ε(x) = 0.

We define a linear map T : N ⊗N ⊗N → N , for all x, y, z ∈ L, by

T (x⊗ y ⊗ z) = [x, y, z], T (1⊗ 1⊗ 1) = 1, T (x⊗ 1⊗ 1) = x,

T (x⊗ 1⊗ y) = T (1⊗ x⊗ 1) = T (x⊗ y ⊗ 1) = T (1⊗ x⊗ y) = T (1⊗ 1⊗ x) = 0.

That is for a, b, c ∈ K

T ((a+ x)⊗ (b+ y)⊗ (c+ z)) = abc+ bcx+ [x, y, z] = (abc, bcx+ [x, y, z]).

As in the previous situation we have

Proposition 4.7. The map T defined above satisfies the ternary distributive con-
dition (2.2).
Proof. In a similar manner to the proof of the previous theorem, we write explicitly
LHS and RHS,

LHS = T (T⊗id⊗id)((a+
∑

axx)⊗(b+
∑

byy)⊗(c+
∑

czz)⊗(d+
∑

u

duu)⊗(f+
∑

v

fvv)).

RHS = T (T ⊗ T ⊗ T )ρ(id⊗ id⊗ id⊗D ⊗D)

((a +
∑

axx)⊗ (b +
∑

byy)⊗ (c +
∑

czz)⊗ (d +
∑

u

duu)⊗ (f +
∑

v

fvv)).

By expanding the LHS and RHS and equating them we obtain the result. 2

A direct verification shows that this map T also satisfies the equation ∆T = (T ⊗
T ⊗ T )ρ(∆⊗∆⊗∆) giving the following

Proposition 4.8. The map T defined above is a coalgebra homomorphism.

4.3 Distributive ternary bialgebras

We introduce here a notion of ternary distributive bialgebra.

Definition 4.9.A ternary distributive bialgebra (resp. ternary distributive weak
bialgebra) is a triple (A, T,∆), where A is a vector space, T : A⊗3 → A a ternary
operation, ∆ : A→ A⊗3 a ternary comultiplication, such that

1. the operation T is distributive, meaning it satisfies equation (2.2),

2. the comultiplication ∆ is coassociative (resp. weak coassociative),

3. the maps T and ∆ are compatible, that is

(4.7) ∆ ◦ T = (T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆).
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It turns out that any ternary operation T over a set X endows K[X] with a
structure of ternary distributive bialgebra with a comultiplication D defined on the
generators as D(x) = x⊗ x⊗ x for all x ∈ X, and then extended linearly. Indeed,
D is coassociative and compatible with T . We have for x, y, z ∈ X

(T ⊗ T ⊗ T ) ◦ ρ ◦ (D ⊗D ⊗D)(x⊗ y ⊗ z)

= (T ⊗ T ⊗ T )(ρ(x⊗ x⊗ x⊗ y ⊗ y ⊗ y ⊗ z ⊗ z ⊗ z))

= (T ⊗ T ⊗ T )(x⊗ y ⊗ z ⊗ x⊗ y ⊗ z ⊗ x⊗ y ⊗ z)

= D ◦ T (x⊗ y ⊗ z).

We note that a distributive ternary bialgebra can be associated to any 3-Lie
algebra as made clear in the previous section .

5. Differentials and Cohomology

In this section, we provide a cohomology theory of ternary distributive
bialgebras that fits with a deformation theory of ternary distributive opera-
tions.

Let (Q,T ) be a ternary distributive set, K be an algebraically closed field
of characteristic zero and let A = K[Q] be the vector space spanned by the
elements of Q. We extend by bilinearity the ternary distributive operation
T to A.
We define low dimensional cochain groups by

C1 := Hom(A,A), C2 := Hom(A⊗3, A)⊕Hom(A,A⊗3),

and
C3 := Hom(A⊗5, A)⊕Hom(A⊗3, A⊗3)⊕Hom(A,A⊗5).

First differentials: For f ∈ C1, we define

δ1m(f) := T (f ⊗ id⊗ id) + T (id⊗ f ⊗ id) + T (id⊗ id⊗ f)− fT,

and

δ1c (f) := (f ⊗ id⊗ id)∆ + (id⊗ f ⊗ id)∆ + (id⊗ id⊗ f)∆−∆f.

The differential D1 is given by

D1(f) := δ1m(f)−δ1c (f) : C1 = Hom(A,A) → Hom(A⊗3, A)⊕Hom(A,A⊗3) = C2.

Second differentials: we define the second differentials for ψ1 ∈ C1 and
ψ2 ∈ C2 by
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d2,1(ψ1, ψ2) = [ψ1(T ⊗ id⊗ id) + T (ψ1 ⊗ id⊗ id)]−
[ψ1(T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (ψ1 ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ ψ1 ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T ⊗ ψ1) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗ ψ2 ⊗∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗ ψ2)],

d2,2(ψ1, ψ2) = [ψ2T + ∆ψ1]− [(ψ1 ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆) +
(T ⊗ ψ1 ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆) +
(T ⊗ T ⊗ ψ1) ◦ ρ ◦ (∆⊗∆⊗∆) +
(T ⊗ T ⊗ T ) ◦ ρ ◦ (ψ2 ⊗∆⊗∆) +
(T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗ ψ2 ⊗∆) +
(T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗ ψ2)],

d2,3(ψ1, ψ2) = [(ψ2 ⊗ id⊗ id)∆ + (∆⊗ id⊗ id)ψ2]−
[(id⊗ id⊗ ψ2)∆ + (id⊗ id⊗∆)ψ2].

Remark that this last formula of d2,3(ψ1, ψ2) involves only ψ2 and it corre-
sponds to the co-Hochschild 2-differential of the ternary comultiplication.
The differential D2 is given by

D2(ψ1, ψ2) := d2,1(ψ1, ψ2) + d2,2(ψ1, ψ2) + d2,3(ψ1, ψ2).

Proposition 5.1. The composite D2 ◦D1 is zero.

Proof. By assumption we have D1(f) = (ψ1, ψ2), where ψ1 = δ1m(f) and
ψ2 = δ1c (f). First we prove that d2,1(D1(f)) = 0, then exactly using the
same techniques we obtain that d2,2(D1(f)) = 0. Now the details:

We write d2,1(D1(f)) using eight terms T1, · · ·, T8 as follows

d2,1(D1(f)) = [T1 + T2]− [T3 + T4 + T5 + T6 + T7 + T8],
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where

T1 = T (f ⊗ id⊗ id)(T ⊗ id⊗ id) + T (id⊗ f ⊗ id)(T ⊗ id⊗ id) +
T (id⊗ id⊗ f)(T ⊗ id⊗ id)− fT (T ⊗ id⊗ id),

T2 = T (T (f ⊗ id⊗ id)⊗ id⊗ id) + T (T (id⊗ f ⊗ id)⊗ id⊗ id) +
T (T (id⊗ id⊗ f)⊗ id⊗ id)− T (fT ⊗ id⊗ id),

T3 = T (f ⊗ id⊗ id)(T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (id⊗ f ⊗ id)(T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (id⊗ id⊗ f)(T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)−
fT (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆),

T4 = T (T (f ⊗ id⊗ id)⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T (id⊗ f ⊗ id)⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T (id⊗ id⊗ f)⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)−
T (fT ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆),

T5 = T (T ⊗ T (f ⊗ id⊗ id)⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T (id⊗ f ⊗ id)⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T (id⊗ id⊗ f)⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)−
T (T ⊗ fT ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆),

T6 = T (T ⊗ T ⊗ T (f ⊗ id⊗ id)) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T ⊗ T (id⊗ f ⊗ id)) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆) +
T (T ⊗ T ⊗ T (id⊗ id⊗ f)) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)−
T (T ⊗ T ⊗ fT ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆),

T7 = T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗ (f ⊗ id⊗ id)∆⊗∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗ (id⊗ f ⊗ id)∆⊗∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗ (id⊗ id⊗ f)∆⊗∆)−
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆f ⊗∆),

T8 = T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗ (f ⊗ id⊗ id)∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗ (id⊗ f ⊗ id)∆) +
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗ (id⊗ id⊗ f)∆)−
T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆f).
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Let Ti,j represents the j-th term of Ti (in the order given). Via the
ternary distributive equation (2.1) and simple cancellation, the terms can
be shown to cancel (in pairs) as follows: T1,1 & T2,4, T1,2 & T7,4, T1,3 & T8,4,
T1,4 & T3,4, T2,1 & T4,1, T2,2 & T5,1, T2,3 & T6,1, T3,1 & T4,4, T3,2 & T5,4, T3,3 &
T6,4, T4,2 & T7,1, T4,3 & T8,1, T5,2 & T7,2, T5,3 & T8,2, T6,2 & T7,3, T6,3 & T8,4,
so that we then obtain at the end D2(D1(f)) = 0. As we mentioned before
using exactly the same techniques we obtain that d2,2(D1(f)) = 0. Since d2,3

corresponds to the coHochschild 2-differential for the ternary multiplication
∆, it’s straightforward that d2,3(D1(f)) = 0. Thus D2 ◦D1 is zero. 2

The 1-cocycle spaces of A are

Z 1
m(A,A) = {f : A→ A : δ1mf = 0}, Z 1

c (A,A) = {f : A→ A : δ1cf = 0}

and
Z 1(A,A) = Z 1

m ∩ Z 1
c = H1(A,A).

This is the space of maps which are simultaneously derivations and coderiva-
tions.
The 2-coboundaries space of A is

B2(A,A) = Im(D1).

The 2-cocycles space of A is

Z 2(A,A) = ker(D2).

Then the second cohomology group is given by the quotient Z 2(A,A)/B2(A,A).

6. One-Parameter Formal Deformations

In this section we extend to ternary distributive weak bialgebras the
theory of deformation of rings and associative algebras introduced by Ger-
stenhaber [20] and by Nijenhuis and Richardson for Lie algebras [30]. The
fundamental results of Gerstenhaber’s theory connect deformation theory
with the suitable cohomology groups. This theory was extended to ternary
algebras of associative type in [3, 4].
In the following we define the concept of deformation for a ternary distribu-
tive bialgebra and provide the connection to cohomology groups. The idea is
to deform both the ternary multiplication and the ternary comultiplication
at the same time.
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Let (A, T,∆) be a ternary distributive bialgebra. A deformation of (A, T,∆)
is a K[[t]]-bialgebra (At, Tt,∆t), where At = A ⊗ K[[t]] and At/(tAt) ∼= A.
Deformations of T and ∆ are given by Tt = T + tT1 + · · · + tnTn + · · · :
At⊗At⊗At → At and ∆t = ∆+ t∆1 + · · ·+ tn∆n + · · · : At → At⊗At⊗At

where Ti : A⊗A⊗A→ A, ∆i : A→ A⊗A⊗A, i = 1, 2, · · · , are sequences
of maps.

Suppose T = T + tT1 + · · ·+ tnTn and ∆ = ∆ + t∆1 + · · ·+ tn∆n satisfy the
bialgebra conditions (distributivity, coassociativity and compatibility) mod
tn+1, and suppose that there exist Tn+1 : A⊗ A⊗ A → A and ∆n+1 : A →
A⊗A⊗A such that T + tn+1Tn+1 and ∆ + tn+1∆n+1 satisfy the bialgebra
conditions mod tn+2. Define φ1 ∈ Hom(A⊗5, A), φ2 ∈ Hom(A⊗3, A⊗3), and
φ3 ∈ Hom(A,A⊗5) by

T (T ⊗ id⊗ id)− T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)

= tn+1φ1 mod tn+2,(6.1)

∆ T − (T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆)

= tn+1φ2 mod tn+2,(6.2)

(∆⊗ id⊗ id)∆− (id⊗ id⊗∆)∆

= tn+1φ3 mod tn+2.(6.3)

Now expanding these three equations we obtain the values of φ1, φ2 and φ3

for the case of n = 0:

φ1 = [Tn+1(T ⊗ id⊗ id) + T (Tn+1 ⊗ id⊗ id)]
− [Tn+1(T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)
+ T (Tn+1 ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)
+ T (T ⊗ Tn+1 ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)
+ T (T ⊗ T ⊗ Tn+1) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆)
+ T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆n+1 ⊗∆)
+ T (T ⊗ T ⊗ T ) ◦ ρ ◦ (id⊗ id⊗ id⊗∆⊗∆n+1)],
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φ2 = [∆n+1T + ∆Tn+1]− [(Tn+1 ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆)
+ (T ⊗ Tn+1 ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆)
+ (T ⊗ T ⊗ Tn+1) ◦ ρ ◦ (∆⊗∆⊗∆)
+ (T ⊗ T ⊗ T ) ◦ ρ ◦ (∆n+1 ⊗∆⊗∆)
+ (T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆n+1 ⊗∆)
+ (T ⊗ T ⊗ T ) ◦ ρ ◦ (∆⊗∆⊗∆n+1)],

φ3 = [(∆n+1 ⊗ id⊗ id)∆ + (∆⊗ id⊗ id)∆n+1]
− [(id⊗ id⊗∆n+1)∆ + (id⊗ id⊗∆)∆n+1].

Proposition 6.1. Let (A, T,∆) be a ternary distributive weak bialgebra
and (At, Tt,∆t), where At = A ⊗ K[[t]], Tt = T + tT1 + · · · + tnTn + · · · :
At⊗At⊗At → At and ∆t = ∆+ t∆1 + · · ·+ tn∆n + · · · : At → At⊗At⊗At

where Ti : A⊗A⊗A→ A, ∆i : A→ A⊗A⊗A, i = 1, 2, · · · , are sequences
of maps.

Then D2(T1,∆1) = (φ1, φ2, φ3) = 0.

In the sequel, we focus on deformations of a ternary distributive set
(Q,T ) and set A = K[Q] to be the vector space spanned by the elements of
Q. We refer to (K[Q], T ), where T is extended by K-trilinearity, as a ternary
distributive algebra.

Definition 6.2. A one-parameter formal deformation of (K[Q], T ) is a pair
(K[Q]t, Tt) where K[Q]t is a K[[t]]-algebra given by K[Q]t = K[Q] ⊗ K[[t]]
with all ternary structures inherited by extending those on K[Q]t with the
identity on the K[[t]] factor (the trivial deformation as the algebra), with a
deformations of T given by Tt = T + tT1 + · · ·+ tnTn + · · · : K[Q]t⊗K[Q]t⊗
K[Q]t → K[Q]t where Ti : K[Q] ⊗ K[Q] ⊗ K[Q] → K[Q], i = 1, 2, · · · , are
linear maps.

The map Tt satisfies the equation

Tt ◦ (Tt ⊗ id⊗ id) = Tt ◦ (Tt ⊗ Tt ⊗ Tt) ◦ ρ ◦ (id⊗ id⊗ id⊗D ⊗D).

That is for elements x, y, z, u, v ∈ Q, we have

Tt(Tt(x⊗ y ⊗ z)⊗ u⊗ v) =
Tt(Tt(x⊗ u⊗ v)⊗ Tt(y ⊗ u⊗ v)⊗ Tt(z ⊗ u⊗ v)).(6.4)

We call the equation (6.4) the deformation equation of the ternary operation
T .
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6.1 Deformation equation

The deformation equation (6.4) may be written by expanding and col-
lecting the coefficients of tk as

∞∑
k=0

tk
k∑

i=0

Ti(Tk−i(x⊗ y ⊗ z)⊗ u⊗ v) =

∞∑
k=0

tk
∑

m+n+p+q=k

Tm(Tn(x⊗ u⊗ v)⊗ Tp(y ⊗ u⊗ v)⊗ Tq(z ⊗ u⊗ v)),

where m,n, p and q are non-negative integers. It yields, for k = 0, 1, 2, . . .

k∑
i=0

Ti(Tk−i(x⊗ y ⊗ z)⊗ u⊗ v) =∑
m+n+p+q=k

Tm(Tn(x⊗ u⊗ v)⊗ Tp(y ⊗ u⊗ v)⊗ Tq(z ⊗ u⊗ v)).

This infinite system gives the necessary and sufficient conditions for Tt to be
a distributive ternary operation. The first problem is to give conditions on
Ti so that the deformation Tt is distributive.

The first equation (k = 0) is the ternary distributivity condition for T0.
The second equation (k = 1) shows that T1 satisfies δ2m(T1) = 0. More
generally, suppose that Tp is the first non-zero coefficient after T in the
deformation Tt. This Tp is called the infinitesimal of Tt and should satisfy
δ2m(Tp) = 0. In order to express it as a 2-cocycle with respect to the cohomol-
ogy defined above, we consider (K[Q], T ) as a weak bialgebra (K[Q], T,D)
whereD is the diagonal map defined on the elements ofQ asD(x) = x⊗x⊗x.
Therefore the pair (Tp, 0) is a 2-cocycle with respect to the cohomology of
(K[Q], T,D). We call Tp a 2-cocycle of the ternary distributive algebras
cohomology with coefficient in itself.

Theorem 6.3. The map Tp is a 2-cocycle of the ternary distributive algebras
cohomology with coefficient in itself.

Proof. In the equation (6.4), make the following substitution k = p and
T1 = · · · = Tp−1 = 0. 2
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6.1.1 Equivalent and trivial deformations

We characterize the equivalent and trivial deformations of ternary dis-
tributive algebras.

Definition 6.4. Let (Q,T0) be a ternary distributive set and A = (K[Q], T0)
be a corresponding ternary distributive algebra. Let Tt =

∑
i≥0 Tit

i and
T ′t =

∑
i≥0 T

′
i t

i be two deformations of (KQ,T0), (T0 = T ′0). We say that
they are equivalent if there exists a formal isomorphism Φt : A[[t]] → A[[t]]
which is a K[[t]]-linear map that may be written in the form

Φt =
∑
i≥0

Φit
i = id+Φ1t+Φ2t

2+. . . where Φi ∈ EndK(A) and Φ0 = id,

such that

(6.5) Φt ◦ Tt = T ′t ◦ Φt.

A deformation Tt of T0 is said to be trivial if and only if Tt is equivalent to
T0.

The condition (6.5) may be written Φt(Tt(x⊗y⊗z)) = T ′t(Φt(x)⊗Φt(y)⊗
Φt(z)), ∀x, y, z ∈ A, which is equivalent to

(6.6)
∑
i≥0

Φi

∑
j≥0

Tj(x⊗ y ⊗ z)tj

 ti =

∑
i≥0

T ′i

∑
j≥0

Φj(x)tj ⊗
∑
k≥0

Φk(y)tk ⊗
∑
l≥0

Φl(z)tl

 ti,

or ∑
i,j≥0

Φi(Tj(x⊗ y ⊗ z))ti+j =
∑

i,j,k,l≥0

T ′i (Φj(x)⊗ Φk(y)⊗ Φl(z))ti+j+k+l.

By identification of coefficients, one obtains that the constant coefficients
are identical

T0 = T ′0 because Φ0 = id

and for coefficients of t one has

Φ0(T1(x⊗ y ⊗ z)) + Φ1(T0(x⊗ y ⊗ z)) =
T ′1(Φ0(x)⊗ Φ0(y)⊗ Φ0(z)) + T ′0(Φ1(x)⊗ Φ0(y)⊗ Φ0(z))+
T ′0(Φ0(x)⊗ Φ1(y)⊗ Φ0(z)) + T ′0(Φ0(x)⊗ Φ0(y)⊗ Φ1(z)).
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It follows

T1(x⊗ y ⊗ z) + Φ1(T0(x⊗ y ⊗ z)) = T ′1(x⊗ y ⊗ z) + T0(Φ1(x)⊗ y ⊗ z)
+ T0(x⊗ Φ1(y)⊗ z) + T0(x⊗ y ⊗ Φ1(z)).

Consequently,

T ′1(x⊗ y ⊗ z) = T1(x⊗ y ⊗ z) + Φ1(T0(x⊗ y ⊗ z))− T0(Φ1(x)⊗ y ⊗ z)
− T0(x⊗ Φ1(y)⊗ z)− T0(x⊗ y ⊗ Φ1(z)).

That is T ′1 = T1 − δ1mΦ1. Therefore T1 and T ′1 are in the same cohomology
class. We consider here the cohomology defined in Section 4, for which se
set ∆ = 0 and ψ2 = 0. Therefore, under the same assumptions, we obtain
the following result:

Theorem 6.5. Let (Q,T0) be a ternary distributive set, (A = K[Q], T0)
be a corresponding ternary distributive algebra and Tt be a one parameter
family of deformations of T0. Then Tt is equivalent to

(6.7) Tt(x⊗y⊗z) = T0(x⊗y⊗z)+T ′p(x⊗y⊗z)tp+T ′p+1(x⊗y⊗z)tp+1+. . .

where T ′p ∈ Z 2(A,A) and T ′p /∈ B2(A,A).
Moreover, if H 2(A,A) = {0} then every deformation of A is trivial.

The ternary distributive algebra is said rigid.

Proof. Let Tp−1 be the first nonzero term in the deformation. The deforma-
tion equation implies δ2mTp−1 = 0 which means Tp−1 ∈ Z 2(A,A). If further
Tp−1 ∈ B2(A,A), i.e. Tp−1 = δ1mg with g ∈ Hom(A,A), then using a formal
morphism Φt = id + tp−1g we obtain that the deformation Tt is equivalent
to the deformation given for all x, y, z ∈ A by

T ′t(x⊗ y ⊗ z) =

Φt ◦ Tt ◦ (Φ−1
t (x)⊗ Φ−1

t (y)⊗ Φ−1
t (z)) =

T0(x⊗ y ⊗ z) + T ′p(x⊗ y ⊗ z)tp+1 + . . .

and again T ′p ∈ Z 2(T0, T0). If T ′p ∈ B2(T0, T0), we proceed in the same way
to remove it, and so one. 2

We end the paper with the fact that we do not know yet how to use these
ternary quandles to obtain invariant of knots and/or knotted surfaces.

Acknowledgements. We wish to thank Edwin Clark for a reading the
manuscript and also for a number of crucial discussions.
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A. Ternary Distributivity from Coalgebras

In the following proposition we give a classification of ternary distributive
linear maps q : A ⊗ A ⊗ A → A that are compatible with comultiplication
meaning that ∆q = (q⊗q⊗q)ρ(∆⊗∆⊗∆). Here A = K[Q] is a vector space
of dimension two with a basis Q = {x, y} and ∆ is the linearization of the
diagonal map D. Here is an outline of the proof of the following proposition.
If we set q(x ⊗ x ⊗ x) = ax + by, then we obtain that a∆(x) + b∆(y) =
(ax+ by)⊗ (ax+ by)⊗ (ax+ by) which implies that a3 = a, b3 = b, a2b = 0
and ab2 = 0. Thus the only possible values of q(x⊗ x⊗ x) are 0, ±x or ±y.
The same holds for the other generators x⊗ x⊗ y etc.
With these notations we have the following

Proposition A.1. A linear map q : A ⊗ A ⊗ A → A satisfies equation
(2.1) (that is ternary distributive) and compatible with the comultiplication
if and only if q is one of the functions indicated via any column in the table
below. The values are determined on the basis elements x⊗ x⊗ x, through
y ⊗ y ⊗ y as indicated in the following chart

q(x, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, y) 0 0 0 0 0 0 ±x ±x ±x ±x ±x ±x ±x ±x
q(y, y, x) 0 0 0 ±x ±x ±x ∓x ∓x ∓x 0 0 0 ±x ±x
q(y, y, y) 0 ±x ±y ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x ∓x 0

q(x, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, x) 0 ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(y, x, y) ±x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x 0 0 0 0
q(y, y, x) ±x ∓x ∓x ∓x 0 0 0 ±x ±x ±x ∓x ∓x ∓x 0
q(y, y, y) ±x ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x ∓x

q(x, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, x, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, y, y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(y, x, y) 0 0 0 0 0 ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(y, y, x) 0 0 ±x ±x ±x ∓x ∓x ∓x 0 0 0 ±x ±x ±x
q(y, y, y) 0 ±x ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x
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q(x, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, x, y) 0 0 0 0 0 0 0 0 0 ±x ±x ±x ±x ±x
q(x, y, x) 0 0 0 ±x ±x ±x ±y ±y ±y ∓x ∓x ∓x 0 0
q(x, y, y) ±x ±x ±y ∓x 0 ±x ∓y 0 ±y ∓x 0 ±x ∓x 0
q(y, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, y) 0 0 0 0 0 0 0 0 0 ±y ±y ±y ±y ±y
q(y, y, x) 0 0 0 ±y ±y ±y 0 0 0 ∓y ∓y ∓y 0 0
q(y, y, y) ∓y ±y 0 ∓y 0 ±y 0 0 0 ∓y 0 ±y ∓y 0

q(x, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(x, x, y) ±x ±x ±x ±x ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, y, x) 0 ±x ±x ±x ∓y ∓y ∓y ∓y 0 0 0 ±y ±y ±y
q(x, y, y) ±x ∓x 0 ±x ∓y 0 0 ±y ∓y 0 ±y ∓y 0 0
q(y, x, x) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q(y, x, y) ±y ±y ±y ±y 0 ∓x 0 0 0 0 0 0 0 ±x
q(y, y, x) 0 ±y ±y ±y 0 ±x 0 0 0 0 0 0 0 ±x
q(y, y, y) ±y ∓y 0 ±y 0 0 0 0 0 0 0 0 0 0

q(x, x, x) 0 ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ±y ∓y ∓y ∓y ∓y ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, x) ±y ∓y ∓y ±y ±y ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, y) ±y ∓x ±x ∓x ±x ∓y ∓y ∓y ∓y ∓y ∓y ∓y ∓y ∓x
q(y, x, x) 0 ∓y ±y ∓y ±y ∓x ∓x ∓x ∓x ±y ±y ±y ±y ±y
q(y, x, y) 0 ∓x ∓x ±x ±x ∓y ∓y ±x ±x ∓y ∓y ±x ±x ∓y
q(y, y, x) 0 ∓x ∓x ∓x ∓x ∓y ±x ∓y ±x ∓y ±x ∓y ±x ∓y
q(y, y, y) 0 ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ∓y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, x) ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, y) 0 ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(y, x, x) ±y ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ±y ±y ±y ±y ±y
q(y, x, y) ∓y ∓y ∓y ∓y ∓y ±x ±x ±x ±x ∓y ∓y ∓y ∓y ±x
q(y, y, x) ∓y ∓y ∓y ±x ±x ∓y ∓y ±x ±x ∓y ∓y ±x ±x ∓y
q(y, y, y) 0 ∓x ±y ∓x ±y ∓x ±y ∓x ±y ∓x ±y ∓x ±y ∓x

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, x) ∓x ∓x ∓x 0 0 0 ±x ±x ±x ±y ±y ±y ±y ±y
q(x, y, y) ±x ±x ±x ∓x 0 ±x ∓x 0 ±x ∓y ∓y ∓y ∓y ±x
q(y, x, x) ±y ±y ±y ±y ±y ±y ±y ±y ±y ∓x ∓x ±y ±y ∓x
q(y, x, y) ±x ±x ±x ∓y ∓y ∓y ∓y ∓y ∓y ∓y ±x ∓y ±x ∓y
q(y, y, x) ∓y ±x ±x 0 0 0 ±y ±y ±y ∓y ∓y ∓y ∓y ∓y
q(y, y, y) ±y ∓x ±y ∓y 0 ±y ∓y 0 ±y ±y ±y ±y ±y ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ∓x ∓x ∓x 0 0 0 0 0 0 0 0 0 0 0
q(x, y, x) ±y ±y ±y ∓x ∓x ∓x 0 0 0 0 0 0 0 0
q(x, y, y) ±x ±x ±x ∓x 0 ±x ∓x ∓x ∓x ∓x 0 0 0 0
q(y, x, x) ∓x ±y ±y ±y ±y ±y ∓y ∓y ±y ±y ∓y 0 0 0
q(y, x, y) ±x ∓y ±x 0 0 0 0 0 0 0 0 0 0 0
q(y, y, x) ∓y ∓y ∓y ∓y ∓y ∓y 0 0 0 0 0 0 0 0
q(y, y, y) ±y ±y ±y ∓y 0 ±y ∓y ±y ∓y ±y 0 ∓y 0 ±y
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q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) 0 0 0 0 0 0 0 0 ±x ±x ±x ±x ±x ±x
q(x, y, x) 0 0 0 0 0 ±x ±x ±x ∓x ∓x ∓x 0 0 0
q(x, y, y) 0 ±x ±x ±x ±x ∓x 0 ±x ∓x 0 ±x ∓x 0 ±x
q(y, x, x) ±y ∓y ∓y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(y, x, y) 0 0 0 0 0 0 0 0 ±y ±y ±y ±y ±y ±y
q(y, y, x) 0 0 0 0 0 ±y ±y ±y ∓y ∓y ∓y 0 0 0
q(y, y, y) 0 ∓y ±y ∓y ±y ∓y 0 ±y ∓y 0 ±y ∓y 0 ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, y, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, y, y) ∓x 0 ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(y, x, x) ±y ±y ±x ±x ±x ±x ±x ±x ±x ±x ±y ±y ±y ±y
q(y, x, y) ±y ±y ±x ±x ±x ±x ±y ±y ±y ±y ±x ±x ±x ±x
q(y, y, x) ±y ±y ±x ±x ±y ±y ±x ±x ±y ±y ±x ±x ±y ±y
q(y, y, y) ∓y 0 ±x ±y ±x ±y ±x ±y ±x ±y ±x ±y ±x ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, y, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±y ±y
q(x, y, y) ±x ±x ±x ±x ±y ±y ±y ±y ±y ±y ±y ±y ±x ±x
q(y, x, x) ±y ±y ±y ±y ±x ±x ±x ±x ±y ±y ±y ±y ±x ±x
q(y, x, y) ±y ±y ±y ±y ±x ±x ±y ±y ±x ±x ±y ±y ±x ±y
q(y, y, x) ±x ±x ±y ±y ±x ±y ±x ±y ±x ±y ±x ±y ±y ±y
q(y, y, y) ±x ±y ±x ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ±x ±x ±x ±x ±x ±x ±y ±y ±y ±y ±y ±y ±y ±y
q(x, y, x) ±y ±y ±y ±y ±y ±y ∓y ∓y ∓x ∓x ∓x ∓x ∓x ∓x
q(x, y, y) ±x ±x ±y ±y ±y ±y ∓x ±x ∓y ∓y ∓y ∓y ±x ±x
q(y, x, x) ±y ±y ±x ±x ±y ±y ∓y ±y ∓x ∓x ±y ±y ∓x ∓x
q(y, x, y) ±x ±y ±x ±y ±x ±y ∓x ∓x ∓y ∓y ∓y ∓y ∓y ∓y
q(y, y, x) ±y ±y ±y ±y ±y ±y ±x ±x ∓y ±x ∓y ±x ∓y ±x
q(y, y, y) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x ±x
q(x, x, y) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, y, x) ∓x ∓x ±x ±x ±x ±x ±x ±x ±x ±x ±y ±y ±y ±y
q(x, y, y) ±x ±x ±x ±x ±x ±x ±y ±y ±y ±y ∓y ∓y ∓y ∓x
q(y, x, x) ±y ±y ±x ±x ±y ±y ±x ±x ±y ±y ∓x ∓x ±y ∓y
q(y, x, y) ∓y ∓y ±y ±y ±y ±y ±y ±y ±y ±y ∓y ±x ∓y ±x
q(y, y, x) ∓y ±x ±x ±y ±x ±y ±x ±y ±x ±y ∓y ±x ∓y ±x
q(y, y, y) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y

q(x, x, x) ±x ±x ±x ±x ±x ±x ±x ±x ±y ±y ±y ±y ±y ±y
q(x, x, y) ±y ±y ±y ±y ±y ±y ±y ±y ∓y ∓y ∓y ∓y ∓y ∓y
q(x, y, x) ±y ±y ±y ±y ±y ±y ±y ±y ∓y ∓y ∓y ∓y ∓y ∓y
q(x, y, y) ±x ±x ±x ±x ±x ±y ±y ±y ∓y ∓x 0 ±y ±y ±y
q(y, x, x) ∓x ±x ±y ±y ±y ±x ±x ±y 0 ∓y 0 ∓y 0 ±x
q(y, x, y) ∓y ±y ∓y ±x ±y ±x ±y ±y 0 ±y 0 ±y 0 ∓x
q(y, y, x) ∓y ±y ∓y ±x ±y ±x ±y ±y 0 ±y 0 ±y 0 ∓x
q(y, y, y) ±y ±y ±y ±y ±y ±y ±y ±y 0 ∓y 0 ∓y 0 ±x
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q(x, x, x) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, x, y) ∓y ∓y ∓y ∓y ∓y ∓y ∓y ∓y ∓y ∓x ∓x 0 0 0
q(x, y, x) 0 0 0 ±x ±x ±y ±y ±y ±y ∓x ±x ∓y ∓y ∓y
q(x, y, y) ∓y 0 ±y ∓x ±y ∓y 0 ±y ±y ±y ±y ∓y 0 ±y
q(y, x, x) 0 0 0 ∓y ∓y 0 0 ∓x 0 ±x ∓x 0 0 0
q(y, x, y) 0 0 0 ±y ±y 0 0 ±x 0 ∓y ∓y 0 0 0
q(y, y, x) 0 0 0 ±y ±y 0 0 ∓x 0 ∓y ±y 0 0 0
q(y, y, y) 0 0 0 ∓y ∓y 0 0 ∓x 0 ±x ∓x 0 0 0

q(x, x, x) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, x, y) 0 0 0 0 0 0 0 0 ±x ±x ±x ±x ±x ±x
q(x, y, x) 0 0 0 0 0 ±y ±y ±y ∓y ∓y ∓x ±x ±x ±x
q(x, y, y) ∓y 0 ±y ±y ±y ∓y 0 ±y ∓x ±y ±y ∓x ±x ±y
q(y, x, x) 0 0 ∓x 0 ±x 0 0 0 ∓y ∓y ∓x ∓y ±y ∓y
q(y, x, y) 0 0 0 0 0 0 0 0 ±y ±y ±y ±y ±y ±y
q(y, y, x) 0 0 0 0 0 0 0 0 ±y ±y ∓y ±y ±y ±y
q(y, y, y) 0 0 ∓x 0 ±x 0 0 0 ∓y ∓y ∓x ∓y ±y ∓y

q(x, x, x) ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, x, y) ±x ±x ±x ±x ±y ±y ±y ±y ±y ±y ±y ±y ±y ±y
q(x, y, x) ±x ±x ±y ±y ∓y ∓y ∓y ∓y 0 0 0 ±x ±x ±y
q(x, y, y) ±y ±y ±x ±y ∓y 0 ±y ±y ∓y 0 ±y ±x ±y ∓y
q(y, x, x) ±x ±y ±y ±y 0 0 ∓x 0 0 0 0 ±y ±y 0
q(y, x, y) ±y ±y ±y ±y 0 0 ∓x 0 0 0 0 ±y ±y 0
q(y, y, x) ±y ±y ±y ±y 0 0 ±x 0 0 0 0 ±y ±y 0
q(y, y, y) ±x ±y ±y ±y 0 0 ∓x 0 0 0 0 ±y ±y 0

q(x, x, x) ±y ±y ±y ±y ±y
q(x, x, y) ±y ±y ±y ±y ±y
q(x, y, x) ±y ±y ±y ±y ±y
q(x, y, y) 0 ±x ±y ±y ±y
q(y, x, x) 0 ±y 0 ±x ±y
q(y, x, y) 0 ±y 0 ±x ±y
q(y, y, x) 0 ±y 0 ±x ±y
q(y, y, y) 0 ±y 0 ±x ±y
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