The spherical buildings associated with absolutely simple algebraic groups of relative rank 2 are all Moufang polygons. Tits polygons are a more general class of geometric structures that includes Moufang polygons as a special case. Dagger-sharp Tits n-gons exist only for n = 3, 4, 6 and 8. Moufang octagons were classified by Tits. We show here that there are no dagger-sharp Tits octagons that are not Moufang. As part of the proof it is shown that the same conclusion holds for a certain class of dagger-sharp Tits quadrangles.
수학에서 중요한 부분인 증명을 학생들은 어려워한다. 증명을 테크놀로지를 이용하여 대수적 시각화 자료와 특수화된 시각화 자료를 만들어 지도하였다. 그러나 테크놀로지를 활용한 대수적 시각화 자료의 표현상 오류에 의하여, 학생들이 경험적 인식을 가지지 못하여 경험적 정당화를 하는데 어려움이 있었다. 테크놀로지를 활용한 특수화된 시각화 자료는 고정된 경우에만 성립하기 때문에 수학적 사고의 확장을 제한하였다. 이를 해결하기 위해서 테크놀로지를 활용하여 자체 제작한 중학교 3학년 기하단원의 기하적 시각화 자료와 일반화된 시각화 자료를 통해 학생들에게 경험적 인식을 심어주어 경험적 정당화를 시켰으며, 수학적 사고의 향상을 관찰할 수 있었다.
지리정보시스템의 이론적 틀로 인식되고 있는 지도대수(Map Algebra)는 공간자료의 처리단위인 지도레이어를 피연산자로, 여러 처리소프트웨어를 연산자로 모델링하는 대수체계이다. 본 논문에서는 지도대수와 관련된 대표적 선행연구를 검토하여 그 제한점을 밝혀내어 보완하였다. 첫째 지도 레이어를 함수로 모형화하여 함수 프로그래밍의 메타 함수기능의 적용을 가능하도록 하였다. 이것은 지도대수언어에 메타연산자를 포함시켜 지리정보시스템의 사용자언어에 필요한 프로그래밍 기능을 제공하게된다 . 둘째 기존 지도대수언의 어의적.문법적 한계를 분석하고 이를 확장하여 지도 데이터 모델과 지도대수언어를 정형화한 후 지도대수 처리기으 원형을 설계하고 구현하였다. 지도대수언어 구문해석기는 기존의 지리정보시스템이 갖고 있는 이질적인 고유 명령어를 공통언어로 재구성하는 역할을 수행한다. 본 연구를 통해 구현된 맵시(MspSee)는 웹에 기반한 지도대수 처리기로써 본 논문에서 제시된 다양한 지도대수의 개념을 검증할 수 있었다. 지도대수언어를 통한 지리정보시스템의 사용자 인터페이스는 제트워크상에 분산되어 있는 지리정보와 그 처리모듈을 웹 클라이언트라는 간단하지만 강력한 인터페이스로 접근을 가?케 함으로써 인터넷 지리정보시스템의 중요 하부구조로 자리잡을 것으로 전망된다.
In this paper, a series of tasks related on polygonal numbers and pyramidal numbers are suggested for using them as teaching unit materials for teaching and learning of sequences in junior high school mathematics. Especially, finding n-th term in those seque-nces, relations among polygonal numbers, and relations among Pyramidal numbers are focused on. A series of tasks related on polygonal numbers and pyramidal numbers have three math-eucational values. First, they have a value as natural materials for teaching and teaming of finding nth term of original sequences using pro-gression of differences. Second, they have a value as materials for teaching and learning of mathematical thinking such as general-ization, analogy, etc. Third, they have a value as materials for teaching and learning of algebraic operation, proof, and connecting mathematical knowledges.
For a smooth algebraic curve C of genus g $\geq$ 4, let $SU_C$(r, d) be the moduli space of semistable bundles of rank r $\geq$ 2 over C with fixed determinant of degree d. When (r,d) = 1, it is known that $SU_C$(r, d) is a smooth Fano variety of Picard number 1, whose rational curves passing through a general point have degree $\geq$ r with respect to the ampl generator of Pic($SU_C$(r, d)). In this paper, we study the locus swept out by the rational curves on $SU_C$(r, d) of degree < r. As a by-product, we present another proof of Torelli theorem on $SU_C$(r, d).
The article makes a discussion to conceptualize a histo-genetic principle in the real historical view point. The classical histo-genetic principle appeared in 19th century was founded by the recapitulation law suggested by biologist Haeckel, but recently it was shown that the theory on it is no longer true. To establish the alternative rationale, several metaphoric characterizations from the history of mathematics are suggested: among them, problem solving, transition of conceptual knowledge to procedural knowledge, generalization, abstraction, circulation from phenomenon to substance, encapsulation to algebraic representation, change of epistemological view, formation of algorithm, conjecture-proof-refutation, swing between theory and application, and so on.
초월수의 연구는 2000년 이상 수학자들을 괴롭혀 왔던 고대 그리스의 기하학 문제의 하나인 원적문제가 불가능하다는 것을 보여줌으로써 수학사의 중요한 분야임을 입증하였다. Liouville은 1844년에 처음으로 구체적인 초월수의 예를 제시하였고, 칸토어는 1874년에 초월수의 존재성을 증명하였다. Louville 정리는 많은 초월수를 만들어 낼 뿐 아니라 초월수의 존재성을 증명하는데 이용할 수 있다. 1873년에 Hermite가 자연로그의 밑수 e가 초월수임을 보이고, 1882년에 Lindemann이 원주율 $\pi$가 초월수임 증명하였다. 1934년에 Gelfond와 Schneider는 각각 힐버트의 7번째 문제에 대한 서로 다른 완전한 해를 찾았다. 1966년에 Baker는 Gelfond-Schneider 정리의 일반화된 결과를 증명하였다. 이 연구의 목적은 초월수의 개념과 발달과정을 살피고, 미해결 문제를 제시하여 초월수의 연구가 촉진되도록 후학들에게 연구 동기를 부여하고자 한다.
수학 언어는 보통 자연언어(Natural language), 대수언어(algebraic langauge) 그리고 도식(schema)으로 구성되는데, 이 논문에서는 도식에 논의의 초점을 맞추고자 한다. 도식은 고대 그리스의 피타고라스 시대부터 이미 기하학적 추론에서 사용되었는데, 동양수학도 예외가 아니어서 중국의 고문서에서도 도식이 발견되곤 한다. 도식은 감각적인 이미지를 통하여 개념적인 것으로의 전이가 이루어지는 곳이다. 그래서 도형은 직관에 직접 호소함으로써 문제해결을 용이하게 해주는 발견술적인(heuristic) 가치를 지니고 있다. 도식의 도입은 또한 교육적인 관점에서도 매우 효율적이다. 그러나 그것이 증명을 대신할 수는 없다는 점을 잊어서는 안되겠다. 이 논문에서는 통시적 관점에서 다양한 도식을 소개한 후에 카테고리 이론과 파인만 다이어그램 그리고 아르강 평면을 고찰하면서 도식이 새로운 지식의 구축에 필요불가결한 방법과 도구임을 보이고자 한다.
We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.
본 연구에서는 유클리드의 저작중의 하나인 자료론에 대해 소개하고자 한다. 먼저 자료론의 내용 구성에 대해 살펴보고, 이러한 고찰을 바탕으로 하여 이 책의 형식적인 체계에 대해 분석한다. 형식적인 체계는 정의와 명제, 증명이 기술되어진 방법에 대해 분석하고, '주어진(given)' 이 가지는 의미에 대해 살펴본다. 마지막으로는 자료론이 지니고 있는 수학적인 의미에 대해 분석한다. 수학적인 의미는 대수적인 관점, 기하학적인 관점, 유클리드의 원론과 대비된 관점에서 살펴본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.