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EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS
By Daniel T. Stallworth and Fred W. Roush

Abstract: We study existence of polynomial integrating factors and solutions
F(x,y)=c of first order nonlinear differential equations. We characterize the
homogeneous case, and give algorithms for finding existence of and a basis
for polynomial solutions of linear difference and differential equations and
rational solutions or linear differential equations with polynomial coefficients,
We relate singularities to nature of the solution.

Solution of differential equations in closed form to some degrec might be
called more an art than a science: The investigator can try a number of
methods and for a number of classes of equations these methods always work.
In particular integrating factors are tricky to find.

An analogous but simpler situation exists for integrating inclosed form,
where for instance there exists a criterion for when an exponential integral
can be found in closed form.

In this paper we make a beginning in several directions on these problems,
for 2 variable ordinary differential equations. The case of exact differentials
reduces immediately to quadrature. The next step is perhaps that of a polyno-
mial integrating factor, our main study.

Here we are able to provide necessary conditions based on related homogeneous
equations which probably suffice to decide existence in most cases.

As part of our investigations we provide complete algorithms for existence of
and finding a basis for polynomial solutions of linear differential and difference
equations with polynomial coefficients, also rational solutions for such differential
equations.

Our goal would be a method for decidability of whether any differential
equation Mdx-+-Mdy=0 with polynomial M, N has algebraic solutions(or an
undecidability proof). We reduce the question of all solutions algebraic to
singularities but have not yet found a definite procedure to find their type.

We begin with general results on the set of all polynomial solutions and
integrating factors.

Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials
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in x, y with no common factor. When does there exist an integrating factor «
which is (i) polynomial (ii) rational ? In case (i) the solution F(x, ¥)=c¢ will be
a polynomial. We assume all functions here are complex analytic polynomial

in some open set.

PROPOSITION 1. Let f(x, ) be a function g(h(}c, ¥)), where g is non constant,
in some open set. Then h(x,y)=c is also a solution Moreover if h(x,y) is the
polynomial of minimum degree giving a solution then any polynomial solution
f has this form, with g polynomial.

I'or the second statement, let f=c¢ be a nonconstant polynomial solution and
h=c the polynomial solution of minimum degree. Then h,f are solutions for
all complex numbers because of the polynomial property. There exists a
function g defined at least locally by

I T
’ L Ny
g (h(x.y))— kx -"—h?

and we have g is algebraic. Suppose first g is not rational. Let F(x,y) be the
field of rational functions of x,y over c.

Let U be the subfield of all functions which are rational in f, k. We will show
U is isomorphic to a subfield of purely transcendental degree 1 extension. By
Luroth’s theorem it itself will be such.

There exists y; such that setting y=y, gives an isomorphism on the field of
rational functions in k(x,y), f(x,y). Take y,E¢ transcendental over the field
of coefficients of f,h. No algebraic function of f(x, yis locally constant except
a constant rational function. Therefore this is well defines and a field homo-
morphism. Therefore it is 1-1.

By Luroth’s Theorem there exists a rational function »(x,#) such that both
h(x,y), f(x,y) are rational functions of #(x,y). So some rational function of
7(x,y) is a polynomial

P(r(x,»)

Sr(x,y) °

Write this as
h (n(x, y),d(x, )
hy(n(x, ), d Cx, 3))

where h, are homogeneous, #,d numerator and denominator of 7 in lowest

terms.
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Then since P, S are relatively prime, so are &, h,. By the Euclidean algorithm
polynomials b b, exist with plhl-{vp,_,k?'f'd(looking at the ring of function
polynomial in »/d). But h/h, We have then that k is a power of d. Similar
reasoning gives h, a power of n. So h, is constant.

Write & as a product H(a,.n-I-b’.d). Then some.agn+bd is constant and the
rest are multiples of this. It follows that a linear fractional transformation

r
ar+b

is a polynomial which also generates the field. It must coincide then with #.

y—

This last statement also applies with &, f rational.

PROPOSITION 2. Any polynomial integrating factor is a polynomial in h times
the integrating factor giving h.

PROOF. The solution will be a polynomial f(h). Its derivatives will be f"(h)
hl.f'(h)hy. The divisor, f’(h) times the g.c.d. of h_v_.hy will be the integrating
factor.

The homogeneous case has known rational integrating factor

1
Mx+Ny

but has general importance because of the terms of highest(or lowest) degree.

THEOREM 1. For a nonconstant polynomial integraling factor to exist, h must
be divisible by V for some polynomial V of degree at least 1. Conversely if h
is @ homogeneous polynomial having a square factor, a nonconstant polynomial

integrating factor exists.

PROOF. The second statement is immediate. Suppose h is the least degree
solution of Mdx+Ndy, M, N homogeneous degree , x# an integrating factor,
The top degree terms of U give an integrating factor, so we can assume u,
and therefore h, are homogeneous. Assume the degree of %k is minimal for this.
Let h have degree £, h=xf(z,1) where z=y/x, u=zxu(z,1). Then u/h, ky. Tk
follows u(z, D|f(», 1), f(z,1). So f(z,1) has u(z, 1) as a square factor. Likewise
f(l. %) has u(l. %) has a square factor., The ratio must be a polynomial

divided by x in the first case, » in the second so it must be a polynomial.
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PROPOSITION 3. For M, N homogencous of equal degree, a rational solulion
extsts if and only if some multiple of numbers Ar are rational in the case of

no multiple roots of Mx-+Ny, Here lel r be the roots of My+Mx in z=—‘vr—

including an infinite root if y|n, and A, are for finite roots, assuming M,N
are relative prime

A &= M(r, 1)
r M(r,1) +M (7, l)r-%—Nx(r, 1)

and for infinite

e M{1,00+N(1,0)

then the solution is s
Hr(y_rx) Tey oo=¢

PROOF. The solution is obtained from

M(x,y)dx  N(x,y)dy
Ny+Mx * Ny+Mx

by deleting repeated terms. We expand each in partial fractions where Ny-+

Mx-:r:(x—fy)ysover finite roots, where £=0 if no infinite roots occur, else=1.
Let

M@y _ 4 . B

Mx+Ny z=1y y
then the solution is Alog(x—7 y)+(y) where considering

Nay 5 B | 4

Mx+Ny “ x—-ry ¥

we obtained the term Alogy. This proves the solution formula and that implies
the rationality condition. It remains to check the A.

A

M@y _y i B
Mx+Ny & x—=r.y + y' ¥=1

A.
M(x,1) _ i B
Mx+N ¥ =7, + 1

Then asymptotically the two sides are
M@, 1) A,

DM G-ry 4 =7 3°

M(r‘., 1)
A=, DM@, DN, D
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To get A_, we study

N B. A
L. M1, 5 L 2
Mx+Ny =1y y
Asymptotically as y—0, x=1

__‘Mgl’ 0) —— — N(ll 0) ! — AOO
yYDIM+Ny)  yM (1, 0)+yN'(1L,y)+N(1, ) ¥
A — N(I-,O)*

™ NCLO)+M (1,0

LEMMA L. If U(x,y), V(x,y) are products of powers of (x-ay) and any g(U
(x,y)+log Vix,y)) is an algebraic function then U is a function of V or V is
constant.

PROOF. If not, take a curve along which V(x,y) is constant. Then g must
be algebraic on this curve. So it is algebraic. But then take a curve along
which U(x, y) is constant. We have nonalgebraic.

THEOREM 2., Let M,N be homogeneous of equal degree, relatively prime,
Mx+Ny having a multiple root. Expand

M .4,
MxtNy % SO
and
N
Mx+Ny
as
Aied + By —+Q(x)

y (x—7 ¥)
Then a rational solution exists if
(1) There is only one root r of Mx+Ny
(2 All A, are zero, or

3 5:#,_1 is a function of ‘.=1H(x—ry) v
Berix=r )

In case(l) x—ry=c and in cases (2), (3)
ir

A i-1 ¢
r>2 i(x—r y)
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is a solution. In all other cases there is no rational solution f(x,y)=c.

PROOF. We have a partial fraction expansion

A.
' M _ ir _ N
J Wil —Z'f o +Q(y)_.fH‘“—MxﬁNy +P(x)

giving the solution. So it is

A,
= — L4374, log(s—ry)
122 (x—r ¥) i—1
A function of this is rational if there is one and only one root (take x—7y)
or if all A 1 are zero. It also happens if
A
DN
i>2 (x—ry)

ir

is a function of

A:‘r
Hl(x—ry)
=

If the one is not a function of the other and both are nonzero, then the sum

cannot be rational by Lemma 1.

LEMMA 2. Let f be a (Laurent) power series in z. Then f represents a rational
Sunction of z for sufficiently small z=0 if and only if for all large n the
coefficient of x" can be expressed as a finite sum of series of the form f(n)r"
where f is a polynomial, r is a complex number. Here r is a root of the
denonimator, the degree of f in its multiplicity minus 1.

PROOF. Any finite set of terms can be altered by adding @ sum of powers
of z. Then we can have a rational function by expressing the powers as a sum
of ai(l—rz)"" =Z‘al.rfzi(£+§—1) where

i. H—l---r—il-r—l (z'-!—r_—l)
1,24 i
Conversely any rational function by first dividing and taking a remainder can
be expressed as

%E%. deg P(x) <deg R(x)

Then by expressing R(x) in terms of partial fractions we get the form descri-
bed. Given a differential equation polynomial in x is there an algorithm to
tell if a rational solution exists?
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PROPOSITION 4. If f is a polynomial solution of Mdx+Ndy then the highest
degree term Of f forms a polynomial solution Mdx-+Ndy where M, N are the
homogeneous polynomial, consisting of the highest degree terms of M,N. The
same holds for lowest degree terms.

PROOF. Let U be an integrating factor which wi]l be polynomial
= Of =0f
(um=2L, uN L )

then the highest terms of UM equal the highest degree terms of -g-:':—, and the

same for UN, —g-xi But those came from the highest degree terms of U, M,
7 5 = af() a‘f(l
N, f respectively. S if we denote them by subscript 0, U M T UON = i

The same holds for lowest degree.

Suppose we have chosen a particular solution (nonunique) for the highest (or
lowest) degree terms. One way to proceed is to look next at the second highest
or lowest degree terms. This will also be homogeneous and thus we will have
a linear equation which can be translated into a first order nonhomogeneous

linear equation in one variable,
(n ¢
23"+
There are linear equations relating the coefficient of x to coefficients of lower
degrees. The least degree that this produces in the equation is min(n,—7+m)

7”+...+p0:0

where c!.x"‘ is the minimum degree nonzero term of P. This term is
! n,—i+m
DY "
since we have c,.x"‘ times D'x". Here S is the set of 7 such that n.—i+m equals
the minimum. What is the lowest degree coefficient which can produce a term
of degree n‘.—iﬁ—m? The coefficient of x* can produce a term of degree at most
r—i+deg P. So this gives a definite bound.

PROPOSITION 5. Let poy(")+---+_b"y= P be any linear differential equation

ntl1,
with coefficients polynomial in x. There exists an algorithm for deciding

exislence of and finding a polynomial solution.

PROOF. Change x to x—c¢ so that b, has nonzero constant terms. The previous



192 Daniel T. Stallworth and Fred W.Roush

discussion shows we have a linear set of equations for the coefficients ¢, in of

"

x fym)e, +f(me, |

in . Ty has degree # and all their ¢, have degree at most », i, e, come from

ook f k(m)cﬂ_ =0 for some £, where f(m) are polynomial

expressions in nth derivative. These equations are necessary and sufficient for
a power series solution. We can interpret them as a matrix expressing ¢, , ¢

m—1"
cm--k-{l in terms of Cm—l'cm—'.’mcm—h' Write c(m):(cm'crn--l'..CJJr—ﬁ+l)' Then
c(m)=cGu—1) A(m) where

| =h S —fi ol
. S o 2o o
A(m) is %o Zo 0 ‘
I 0 0
0 1 0|

If there exists a solution of degree m then(c,, 5-k—lm'cm) #0 but (cm+k---, - rl) -0,

= =fa =F
So this matrix for m-+# is singular. Here the first row is —e b — =2 £,

which will have

A.f.
otherwise rows have only one 1. The determinant is 7 =
0
only a finite number of roots (assuming £ chosen so fk-;ﬁo) then we have an
upper bound on the degree m, since f(m-+k)=0. Then we just have simultaneous

linear equations on the coefficients.

THEOREM 2. If Xf(n)x is any power series solution of the linear equation
1J_'P(:::) y *—R(x)
P'.(x). R(x) polynomials

then for all n>>deg R(x)+2k we must have (f(n), f(n—1)], - fn—k+1]=[f(n
—1), - f(n—Fk)] A where A is the malrix

! 1 -. —f
|

r:"

fo |
1 0 we O |
0 l we 0
of the last theorem. Here f,, are determined polynomials in n.

This follows from the proof of the last theorem.

THEOREM 3. Let p,()d'y+, GOA" y+-p(y=p,  (x) be linear differ-
encial equation with polynomial coefficients. There exists an algorithm to decide
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if it has a polynomial solution.

PROOF. We will expand y as an infinite series X¢ (n) with A( ) \’nx 1)

Write p,(x) first as similar(finite sum), then expand it in the form Z\ m)
d kj(m) for certain polynomials d;;, ma variable. .
We will use the identity

=G am

_ G

nt+k\
45
Now we look at the coefficient of

Aj(c‘.(ﬂ):c:.(i— 7) produces a term,
C(zf )( ::i;)dn—iﬁj(f—j}(n—’;:—j)/(n—?+j)
:‘”f(:)dn~z'+fj ’_J)(n—?ﬂ')

Each ¢, j produces at most one such term. The equation then reduces to Xe,

x
n

P

) in the equation, for » large. The term

dn_:.{_jj(""j)(n—z'+j):0. Here j=1 to n, and ¢ is such that #—7+j7>=0and n—i
-I—j<deg(Pj). Let k=n—i+j. This gives an equation
max®fp; n
= Sewar = 0(p)
as before this gives a polynomial recursion f (n)c, +s=fs_1(n) ¢ n+s—1'"f0(”)‘:m’
As before we write in matrix form. For the highest coefficient the matrix must
be singular. There are only a finite number of numbers # for which this
happens. So this bounds the degree of the polynomial and the rest is simult-

aneous linear equations.

LEMMA 3.The function @' are linearly independent over rational functions of
n, for distinct a70.

PROOF, If not then by taking a sum Z'rz X" f;(n)=0, some sum X
(x— a)
=0. ¢, ;=0. This is false.
Cor. For any linear differential equation with polynomial coefficients there
exists an algorithm to decide if a rational solution exists.
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PROOF. By Theorem 2 it is enough to tell whether an equation v(n+1)=
Muy(n) has a solution where v(n-1D)=[f(n+k),f(n-+-1)] and f(n) is a sum of
terms f,.(n)r:.",f_,. polynomials. We can limit the r.+to a finite set of numbers
since if f=r/s is a rational sclution in lowest terms then any prime factor S
must divide the coefficient of the highest derivative (expand f in partial fracti-
ons, otherwise the denominator of this term has a power of x—r, which cannot
be cancelled) If this equation holds for all » it holds for the coefficients fr.(n)
of the powers of each r, by the lemma. This gives a finite difference equation
for f.

By the theorem on difference equations they can be solved. This bounds the
degree of denominators. By multiplying by the largest possible denominator we
reduce to finding polynomial solutions.

THEOREM 4. The following are equivalent, for a differential equalion Mdx
+Ndy=0. Where M, N are relatively polynomials in x,y: (1) all solution in any
open disk are algebraic (2) all solutions, if exiended as far as possible have
singularities only poles and branch points of finite order (3) there is a general
solution a(x,y)=c an algebraic ¢ an arbitrary parameter (4) there are algebraic
solutions for some X through all ¥, in a cantor set such that N(x,y)=0.

PROOF. Whenever N#£0 there exists a solution locally in a disk. If N=0
identically then also M =0 identically which will not happen for N, M relatively
prime. When N=0 we can write a local solution uniquely as an analytic
function in a parameter, the initial y value y, at x,. The set S where the
solution exists will be open in ¢ and those where it has degree at most = will
be closed subset. By Baire category for some e« we have it is somewhere
dense within each open subset. But if we have an open subset where the degree
is at most y we can write the coefficients as analytic functions or the para-
meter locally. All derivatives of e are rational in y at x. This gives simult-
aneous linear equations in the coefficients and proves they are rational in y.
This solution is then valid for a dense open set not just a disk. It also means
y is an algebraic function e(x,y)=c¢. So (4) implies(3).

Suppose (3) holds. Then this solution is valid for all ¢ and then exists a
local solution(possibly multivalued) near any point. Therefore all solutions
where N=0 must coincide with part of each a solution. But every solution has



Existence of Polynomial Integating Factors 195

N =0 almost everywhere, as above so all solutions fit this form (with a maxi-
mally extended). Equivalence of (1), (2) is a well known theorem and (1)=(4),
(see Ahifors [1]).

THEOREM 5. Suppose an equation Mdx-+Ndyo, M, N polynomial has a general
solution a(x,y)=c (a(x,y) algebraic). Then rvhen-we make [fractional lincar
substitulions for x,y, there exists n€Z such that al all bul a finite number of
points €7 of the singular curve N(x,y)=0 there exists a local power series
solution

=y
y=ZXa,z

- ~1/n z
in z=(x—x_) ", or a solution x=c,

PROOF. Ahlfors proves at any branch point of finite order there exists such
a power series representation. It suffices to show almost all (x,y) on N are
branch points of a solution of bounded order. Some(x,y,) can be outside any
solution. e.g., take as equation k(x,y,¢)=1 where h(0,%,¢)=0. If we wrote
a(x,v)=c in the form h(x,y,c)=0 (irreducible) it is sufficient in order for a

solution to exist in a neighborhood of x,y, that not all coefficients of ¢ be
zero, n>0. If not each coefficient is divisible by some factor of N. Suppose

infinity many points x_ exists. Then we can find an irreducible algebraic

0
curve containing infinitely many points, so on which the coefficients vanish.
So we may take all coefficients divisible by an irreducible factor N, of N.
Now assume that for a general algebraic nontrivial solution hk(x,y,c¢) rational
in x,y, polynomial in ¢, the degree in ¢ is minimal. Let the constant term
be 1.

If the degree is greater than 1, we can reduce it as follows: differentiate
with respect to x then replace y" by M/N, divide by # a power or #. In this
process everything goes to parts divisible by the factor N, of N except for
ND_‘y’ which goes to Noy M. Then N, and N must have a common factor. This
cannot happen for N irreducible.

Next suppose that the polynomial has degree 1. We may take a general
solution as e(¥,y)=e¢, a(x,y) rational. Such a solution will have the property
mentioned. All x,y, will be on a solution, and if a singularity occurs it will

not branch type degrees of singularities are bounded.
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CONCLUSION

We have a number of algorithmically decidable necessary conditions for
existence of a polynomial integrating factor. At any point x,y, we can
replace x,y by x—=x, y—y, The terms of highest and lowest degree must
themselves have integrating factors. If we write homogencous polynomials as
functions of 1 variable only we can extend this condition up and down finitely
many degrees by taking an ordinary equation system in the polynomials.

We raise these questions: (1) How likely are conditions of this type to be
sufficient ? (2) Can we bound the degree of an algebraic solution? (3) If a(x,
y)=c is an algebraic solution, M,N polynomials must g(¢) be rational for
some g7

REFERENCES

[1] L. Ahlfors, Complex Analysis, New York, McGraw-Hill, 1968.

Department of Mathematics & Physical Sciences
Alabama State University
Montgomery, Alabama 36195
U.S.A.



