DOI QR코드

DOI QR Code

LOCI OF RATIONAL CURVES OF SMALL DEGREE ON THE MODULI SPACE OF VECTOR BUNDLES

  • Received : 2009.08.05
  • Published : 2011.03.31

Abstract

For a smooth algebraic curve C of genus g $\geq$ 4, let $SU_C$(r, d) be the moduli space of semistable bundles of rank r $\geq$ 2 over C with fixed determinant of degree d. When (r,d) = 1, it is known that $SU_C$(r, d) is a smooth Fano variety of Picard number 1, whose rational curves passing through a general point have degree $\geq$ r with respect to the ampl generator of Pic($SU_C$(r, d)). In this paper, we study the locus swept out by the rational curves on $SU_C$(r, d) of degree < r. As a by-product, we present another proof of Torelli theorem on $SU_C$(r, d).

Keywords

References

  1. J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des varietes de modules de fibres semi-stables sur les courbes algebriques, Invent. Math. 97 (1989), no. 1, 53-94. https://doi.org/10.1007/BF01850655
  2. J.-M. Hwang, Hecke curves on the moduli space of vector bundles over an algebraic curve, Proceedings of the Symposium Algebraic Geometry in East Asia, Kyoto. (2001), 155-164.
  3. J. Kollar, Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996.
  4. H. Lange, Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann. 262 (1983), no. 4, 447-459. https://doi.org/10.1007/BF01456060
  5. N. Mok and X. Sun, Remarks on lines and minimal rational curves, Sciences in China Series A: Mathematics 52 (2009), no. 6, 1-16. https://doi.org/10.1007/s11425-008-0088-x
  6. M. S. Narasimhan and S. Ramanan, Geometry of Hecke cycles. I, C. P. Ramanujam-a tribute, pp. 291-345, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978.
  7. S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973), 69-84. https://doi.org/10.1007/BF01578292
  8. B. Russo and M. Teixidor i Bigas, On a conjecture of Lange, J. Algebraic Geom. 8 (1999), no. 3, 483-496.
  9. X. Sun, Minimal rational curves on moduli spaces of stable bundles, Math. Ann. 331 (2005), no. 4, 925-937. https://doi.org/10.1007/s00208-004-0614-2

Cited by

  1. SMALL RATIONAL CURVES ON THE MODULI SPACE OF STABLE BUNDLES vol.23, pp.08, 2012, https://doi.org/10.1142/S0129167X12500851