LOCI OF RATIONAL CURVES OF SMALL DEGREE ON THE MODULI SPACE OF VECTOR BUNDLES

Insong Choe

Abstract

For a smooth algebraic curve C of genus $g \geq 4$, let $S U_{C}(r, d)$ be the moduli space of semistable bundles of rank $r \geq 2$ over C with fixed determinant of degree d. When $(r, d)=1$, it is known that $S U_{C}(r, d)$ is a smooth Fano variety of Picard number 1, whose rational curves passing through a general point have degree $\geq r$ with respect to the ample generator of $\operatorname{Pic}\left(S U_{C}(r, d)\right)$. In this paper, we study the locus swept out by the rational curves on $S U_{C}(r, d)$ of degree $<r$. As a by-product, we present another proof of Torelli theorem on $S U_{C}(r, d)$.

1. Introduction

Let C be a smooth algebraic curve over \mathbb{C} of genus $g \geq 4$. Let $\mathcal{M}:=$ $S U_{C}(r, d)$ be the moduli space of semistable bundles of rank $r \geq 2$ over C with fixed determinant of degree d. Throughout this paper, we assume $(r, d)=1$. In this case, it is known that \mathcal{M} is a smooth Fano variety of Picard number 1. Hence it is an important project to study the rational curves on \mathcal{M} using the modular properties.

In general, for a Fano manifold N of Picard number 1, the index of N is defined by the number i such that $-K_{N} \cong \mathcal{O}_{N}(i)$, where $\mathcal{O}_{N}(1)$ is the ample generator of $\operatorname{Pic}(N)$. In analogy with the case of projective hypersurfaces, a rational curve $l \subset N$ is called a line on N if the index of N equals $-K_{N} \cdot l$. Also we say that l has degree k if $-K_{N} \cdot l$ equals k times the index of N. It is an open question if every Fano manifold of Picard number 1 has a line ([3], p. 248).

As a Fano manifold, \mathcal{M} has index 2 ([1]). Ramanan [7] found a family of lines on \mathcal{M}, but they sweep out a sublocus of \mathcal{M} of large codimension. It has also been observed that \mathcal{M} is covered by rational curves of degree r, which are called Hecke curves ([6], Corollary 5.16). Hwang ([2], Question 1) asked if the Hecke

Received August 5, 2009.
2010 Mathematics Subject Classification. 14C34, 14H60.
Key words and phrases. rational curves, moduli of vector bundles over a curve, scroll, Torelli theorem.

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2010-0001194).
curves are the rational curves of minimal degree passing through a general point of \mathcal{M}. This was recently answered affirmatively by Sun ([9], Theorem 1). As a corollary, he gave another proof of nonabelian Torelli theorem. He also proved that there are no lines on \mathcal{M} different from those found by Ramanan ([9], Theorem 2).

The aim of this paper is to get more detailed information on the rational curves on \mathcal{M} of degree between 1 and r. In particular, we show that the locus inside \mathcal{M} swept out by the rational curves of degree $<r$, consists of $r-1$ irreducible components, each of which comes from certain extensions of fixed type. We also study the intersections of these components. As a by-product, we get another way to recover the curve C from the moduli space $\mathcal{M}=S U_{C}(r, d)$.

This paper is organized as follows. In $\S 2$, we study certain extension spaces parameterizing the bundles which are not $(1,1)$-stable. It will turn out that these spaces provide the locus of rational curves of small degree.

In $\S 3$, we study the intersections of the images of the extension spaces inside \mathcal{M}. In most cases, their intersection is empty, but there are special pairs whose intersection property can be described in terms of certain scroll over C.

In $\S 4$, we first briefly review Sun's results on rational curves on \mathcal{M}. Combining with the informations from $\S 2$ and $\S 3$, we prove in Proposition 4.2 that for every ε with $1 \leq \varepsilon \leq r-1$, the locus in \mathcal{M} swept out by the rational curves of degree $\leq \varepsilon$ consists of ε irreducible components. Finally in Proposition 4.5, we observe that these results on the loci of the rational curves of small degree provide us another proof of Torelli theorem.

2. Extension spaces

From now on, we fix a curve C of genus $g \geq 4$ and simplify our notation so that $U(\rho, \delta)$ denotes the moduli space of semistable bundles over C of rank ρ and degree δ. Let $U^{s}(\rho, \delta)$ be the open subset of $U(\rho, \delta)$ consisting of stable bundles. Also for a line bundle Λ on C, let $S U(\rho, \Lambda)$ be the moduli space of semistable bundles over C of rank ρ with determinant Λ.

Definition 2.1. (1) For each $0<\rho^{\prime}<\rho$ and $W \in U^{s}(\rho, \delta)$, define

$$
s_{\rho^{\prime}}(W):=\min \left\{\rho^{\prime} \delta-\rho \operatorname{deg}\left(W^{\prime}\right)\right\}
$$

where the minimum is taken over the subbundles W^{\prime} of W of rank ρ^{\prime}.
(2) For any fixed integers $s \geq 0$ and ρ^{\prime}, we define

$$
U_{\rho^{\prime}, s}(\rho, \delta):=\left\{W \in U^{s}(\rho, \delta): s_{\rho^{\prime}}(W)>s\right\}
$$

(3) We say that a bundle $W \in U(\rho, \delta)$ is Lange-stable if $W \in U_{\rho^{\prime}, s}(\rho, \delta)$ where $s=\rho^{\prime}\left(\rho-\rho^{\prime}\right)(g-1)-1$ for every ρ^{\prime}.
(4) A bundle $W \in U(\rho, \delta)$ is called (1,1)-stable if $W \in U_{\rho^{\prime}, \rho}(\rho, \delta)$ for every ρ^{\prime} (cf. [6], Definition 5.1).

Lemma 2.2. (1) For each ρ^{\prime}, if $s<\rho^{\prime}\left(\rho-\rho^{\prime}\right)(g-1)$, then $U_{\rho^{\prime}, s}(\rho, \delta)$ and $U_{\rho^{\prime}, s}(\rho, \delta) \cap S U(\rho, \Lambda)$ are nonempty open subsets of $U(\rho, \delta)$ and $S U(\rho, \Lambda)$ respectively.
(2) A general bundle $W \in S U(\rho, \Lambda)$ is Lange-stable and $(1,1)$-stable.

Remark 2.3. The following inequalities on the slope $\mu(W):=\operatorname{deg}(W) / \operatorname{rk}(W)$ will be used in the proof below.
(1) For $s=\rho^{\prime}\left(\rho-\rho^{\prime}\right)(g-1)-1$, the inequality defining $U_{\rho^{\prime}, s}(\rho, \delta)$ implies

$$
\mu(W)-\mu\left(W^{\prime}\right) \geq 3\left(\rho-\rho^{\prime}\right) / \rho
$$

since $g \geq 4$. Also, we note that $2\left(\rho-\rho^{\prime}\right) / \rho \geq 1 / \rho^{\prime}$ for any $1 \leq \rho^{\prime}<\rho$.
(2) The inequality defining $(1,1)$-stability is equivalent to $\mu(W)-\mu\left(W^{\prime}\right)>$ $1 / \rho^{\prime}$.

Proof. (1) By dimension count, one can show that a general bundle $W \in U(\rho, \delta)$ satisfies

$$
s_{\rho^{\prime}}(E) \geq \rho^{\prime}\left(\rho-\rho^{\prime}\right)(g-1)
$$

see [4], p. 448. The statement for $S U(\rho, \Lambda)$ follows from the observation that for every line bundle L of degree 0 , we have $s_{\rho^{\prime}}(W)=s_{\rho^{\prime}}(W \otimes L)$.
(2) The statement on Lange-stability is an immediate consequence of (1). Also by Remark 2.3, Lange-stability implies (1,1)-stability.

Now we consider the bundles $V \in \mathcal{M}=S U(r, d)$ which are not $(1,1)$-stable, or equivalently, the bundles which admit a subbundle V_{1} such that

$$
\operatorname{rk}\left(V_{1}\right) d-r \operatorname{deg}\left(V_{1}\right) \leq r
$$

Here the equality cannot hold since $(r, d)=1$. For each integer $0<\varepsilon<r$, let r_{1} and d_{1} be the integers satisfying $0<r_{1}<r$ and $r_{1} d-r d_{1}=\varepsilon$. Let $r_{2}=r-r_{1}$ and $d_{2}=d-d_{1}$. For $V_{1} \in U\left(r_{1}, d_{1}\right)$ and $V_{2} \in U\left(r_{2}, d_{2}\right)$, consider those bundles V associated with nontrivial extensions

$$
\begin{equation*}
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Note the following identities: for $0<r_{1}, r_{2}, \varepsilon<r$,

$$
\begin{equation*}
r_{1} d-r d_{1}=r d_{2}-r_{2} d=r_{1} d_{2}-r_{2} d_{1}=\varepsilon \tag{2.2}
\end{equation*}
$$

We have the following which generalizes and refines [7], Lemma 2.1 and [9], Lemma 3.1.

Lemma 2.4. Suppose that V_{1} and V_{2} in the nontrivial extension (2.1) are Lange-stable. Then for a proper subbundle V^{\prime} of V of rank r^{\prime}, the inequality

$$
\mu(V)-\mu\left(V^{\prime}\right)<1 / r^{\prime}
$$

implies that $\operatorname{rk}\left(V^{\prime}\right)=r_{2}, \operatorname{deg}\left(V^{\prime}\right)=d_{2}-1$, and the composition $V^{\prime} \rightarrow V \rightarrow V_{2}$ is a sheaf injection, unless V^{\prime} coincides with the subbundle V_{1}. In particular, $V \in U_{r^{\prime}, r}(r, d)$ for each $r^{\prime} \neq r_{1}, r_{2}$.

Proof. We need to show that

$$
\mu(V)-\mu\left(V^{\prime}\right)>1 / r^{\prime}
$$

for every subbundle V^{\prime} of rank r^{\prime} and degree d^{\prime} if V^{\prime} is neither V_{1} nor a bundle of rank r_{2} with the specified properties. This can be checked case by case. Let V_{2}^{\prime} be the image of the composition $V^{\prime} \rightarrow V \rightarrow V_{2}$ and let V_{1}^{\prime} be the kernel of $V^{\prime} \rightarrow V_{2}^{\prime}$. Let r_{1}^{\prime} and d_{1}^{\prime} (resp. r_{2}^{\prime} and d_{2}^{\prime}) be the rank an degree of V_{1}^{\prime} (resp. V_{2}^{\prime}).
(i) First assume $V_{2}^{\prime}=0$ and $V^{\prime}=V_{1}^{\prime} \neq V_{1}$. Since V^{\prime} is a subbundle of V, $r^{\prime}=r_{1}^{\prime}<r_{1}$. Hence by the identity (2.2) and the $(1,1)$-stability of V_{1}, we get

$$
\begin{aligned}
\mu(V)-\mu\left(V^{\prime}\right) & =\mu(V)-\mu\left(V_{1}\right)+\mu\left(V_{1}\right)-\mu\left(V^{\prime}\right) \\
& >\frac{\varepsilon}{r r_{1}}+\frac{1}{r_{1}^{\prime}}>\frac{1}{r_{1}^{\prime}}=\frac{1}{r^{\prime}} .
\end{aligned}
$$

(ii) Next assume $V_{1}^{\prime}=0$ and $V^{\prime}=V_{2}^{\prime} \neq V_{2}$. If $r_{2}^{\prime}=r_{2}$, then $d_{2}^{\prime}<d_{2}$ and

$$
\mu(V)-\mu\left(V^{\prime}\right)=\frac{r_{2} d-r d_{2}^{\prime}}{r r_{2}}=\frac{r\left(d_{2}-d_{2}^{\prime}\right)-\varepsilon}{r r_{2}}
$$

Thus $\mu(V)-\mu\left(V^{\prime}\right)>1 / r_{2}=1 / r^{\prime}$ if and only if $d_{2}-d_{2}^{\prime} \geq 2$.
If $r_{2}^{\prime}<r_{2}$, by the similar argument as (i), we get $\mu(V)-\mu\left(V^{\prime}\right)>1 / r_{2}^{\prime}=1 / r^{\prime}$.
(iii) Now assume $0 \neq V_{1}^{\prime} \neq V_{1}$ and $V_{2}^{\prime}=V_{2}$. By Remark 2.3 (1) and (2.2), we get

$$
\begin{aligned}
\mu\left(V_{1}^{\prime}\right) & =\left(\mu\left(V_{1}^{\prime}\right)-\mu\left(V_{1}\right)\right)+\mu\left(V_{1}\right) \\
& \leq-\frac{3\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}}+\mu(V)-\frac{\varepsilon}{r r_{1}} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
r^{\prime} \mu\left(V^{\prime}\right) & =\mu\left(V_{1}^{\prime}\right) r_{1}^{\prime}+\mu\left(V_{2}\right) r_{2} \\
& \leq\left(\mu(V)-\frac{3\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}}-\frac{\varepsilon}{r r_{1}}\right) r_{1}^{\prime}+\left(\mu(V)+\frac{\varepsilon}{r r_{2}}\right) r_{2} \\
& =r^{\prime} \mu(V)-\frac{3\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}} \cdot r_{1}^{\prime}-\frac{r_{1}^{\prime} \varepsilon}{r r_{1}}+\frac{\varepsilon}{r} \\
& <r^{\prime} \mu(V)-\frac{2\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}} \cdot r_{1}^{\prime}-\frac{\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}} \cdot r_{1}^{\prime}+\frac{\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}} \\
& \leq r^{\prime} \mu(V)-\frac{2\left(r_{1}-r_{1}^{\prime}\right)}{r_{1}} \cdot r_{1}^{\prime} \\
& \leq r^{\prime} \mu(V)-1 .
\end{aligned}
$$

(iv) The remaining cases $\left(V_{1}^{\prime}=V_{1}, 0 \neq V_{2}^{\prime} \neq V_{2}\right)$ and $\left(0 \neq V_{1}^{\prime} \neq V_{1}, 0 \neq\right.$ $V_{2}^{\prime} \neq V_{2}$) can be checked similarly.

For a fixed line bundle $\Lambda \in \operatorname{Pic}^{d}(C)$, consider the subvariety of $U\left(r_{1}, d_{1}\right) \times$ $U\left(r_{2}, d_{2}\right)$ defined by

$$
\mathcal{D}_{\varepsilon}:=\left\{\left(V_{1}, V_{2}\right): \operatorname{det} V_{1} \otimes \operatorname{det} V_{2} \cong \Lambda\right\}
$$

where r_{1}, d_{1} and r_{2}, d_{2} are determined by ε and the identities (2.2). Let $P\left(V_{1}, V_{2}\right):=\mathbb{P} H^{1}\left(C, V_{2}^{*} \otimes V_{1}\right)$ be the projective space parameterizing the nontrivial extensions up to nonzero scalars.

Lemma 2.5. If $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$ is general, then the classifying map

$$
\Phi: P\left(V_{1}, V_{2}\right) \rightarrow S U(r, \Lambda)
$$

is an injective morphism.
Proof. We assume that V_{1} and V_{2} are Lange-stable. By Lemma 2.4, every bundle V associated to a point of $P\left(V_{1}, V_{2}\right)$ is stable. We claim that there exists a unique injection $V_{1} \rightarrow V$ up to homothety, which implies that Φ is an injective morphism. When $r_{1} \neq r_{2}$, this was already shown in Lemma 2.4.

Now assume $r_{1}=r_{2}$ and suppose that there are two different subbundle maps, say $\alpha, \beta: V_{1} \rightarrow V$, where α induces the original exact sequence

$$
0 \rightarrow V_{1} \xrightarrow{\alpha} V \rightarrow V_{2} \rightarrow 0 .
$$

Applying Lemma 2.4 for $V^{\prime}=\left(\beta: V_{1} \rightarrow V\right)$, we deduce that $d_{1}=d_{2}-1$ and the composition $V_{1} \xrightarrow{\beta} V \rightarrow V_{2}$ is a sheaf injection. This implies that the induced map $\alpha \oplus \beta: V_{1} \oplus V_{1} \rightarrow V$ is also a sheaf injection, whose quotient should be a skyscraper sheaf \mathbb{C}_{x} for some $x \in C$. Hence for some $\lambda \in \mathbb{C}$, the map given by the composition

$$
V_{1} \xrightarrow{(i d, \lambda \cdot i d)} V_{1} \oplus V_{1} \xrightarrow{\alpha \oplus \beta} V
$$

has rank $r_{1}-1$ at x. Taking saturation, we get a nonzero map $\widetilde{V_{1}} \rightarrow V$, where $\operatorname{deg} \widetilde{V_{1}}=d_{1}+1$. This contradicts to the stability of V (The final step of this argument appeared in the proof of [6] Lemma 5.6, which was concerned with the case of rank 2).

Definition 2.6. For each integer ε with $0<\varepsilon<r$, let R_{ε} be the subset of $\mathcal{M}=S U(r, d)$ consisting of the bundles which admit a subbundle of rank r_{1} and degree d_{1} with $r_{1} d-r d_{1}=\varepsilon$.

Note that $V \in \mathcal{M}$ is not (1,1)-stable if and only if $V \in R_{\varepsilon}$ for some ε.
Lemma 2.7. For each $0<\varepsilon<r, R_{\varepsilon}$ is nonempty and irreducible. A general $V \in R_{\varepsilon}$ is contained in the image of $P\left(V_{1}, V_{2}\right)$ for some general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$.

Proof. The nonemptyness of R_{ε} follows from Lemma 2.4. The remaining statements follow from a more general statement proven by Teixidor i Bigas (see [8], Proposition 1.6). In fact, the case of $U(r, d)$ was worked out there, but the same argument applies to $S U(r, d)$.

3. Scrolls

Now we study the intersection of R_{i} and R_{j} inside \mathcal{M} for $0<i \neq j<r$.

Lemma 3.1. Consider $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{i}$, where V_{1} and V_{2} are Lange-stable. If $i+j \neq r$, then the image of $P\left(V_{1}, V_{2}\right)$ inside \mathcal{M} does not intersect R_{j}.
Proof. Consider $V \in P\left(V_{1}, V_{2}\right)$. By Lemma 2.4, there are at most two subbundles, V_{1} and W_{1}, which violate the inequality for the $(1,1)$-stability of V. Also, $\operatorname{rk}\left(W_{1}\right)=r-\operatorname{rk}\left(V_{1}\right)$ and $\operatorname{deg}\left(W_{1}\right)=d-\operatorname{deg}\left(V_{1}\right)-1$. If $V \in R_{j}$, this means that V admits a subbundle W_{1} such that $j=\operatorname{rk}\left(W_{1}\right) d-r \operatorname{deg}\left(W_{1}\right)$. Hence from the identity (2.2) defining i, we see that $i+j=r$.

To study the case $i+j=r$ in more detail, we need first to consider a scroll in $P\left(V_{1}, V_{2}\right)$. For $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}, 0<\varepsilon<r$, consider the rational map

$$
\Upsilon: \mathbb{P} \operatorname{Hom}\left(V_{2}, V_{1}\right) \rightarrow P\left(V_{1}, V_{2}\right)
$$

defined by the complete linear system

$$
\begin{aligned}
P\left(V_{1}, V_{2}\right) & \cong \mathbb{P} H^{0}\left(C, K_{C} \otimes V_{1}^{*} \otimes V_{2}\right)^{\vee} \\
& \cong \mathbb{P} H^{0}\left(\mathbb{P} \operatorname{Hom}\left(V_{2}, V_{1}\right), p^{*} K_{C} \otimes \mathcal{O}(1)\right)^{\vee},
\end{aligned}
$$

where $p: \mathbb{P} \operatorname{Hom}\left(V_{2}, V_{1}\right) \rightarrow C$ is the projection.
Lemma 3.2. Assume $g \geq 4$. If $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$ is general. Then the map Υ is an embedding.
Proof. For any $x \in C$, the line bundle $p^{*} K_{C} \otimes \mathcal{O}(1)$ restricted to the fiber $p^{-1}(x)$ is very ample. Thus it is very ample on $\mathbb{P H o m}\left(V_{2}, V_{1}\right)$ if for every $x, y \in C$, the case $x=y$ included, the restriction map

$$
H^{0}\left(\mathbb{P H o m}\left(V_{2}, V_{1}\right), p^{*} K_{C} \otimes \mathcal{O}(1)\right) \rightarrow H^{0}\left(\pi^{-1}(x+y),\left.p^{*} K_{C} \otimes \mathcal{O}(1)\right|_{\pi^{-1}(x+y)}\right)
$$

is surjective. By the projection formula, this is guaranteed if for any $x, y \in C$,

$$
h^{0}\left(C, K_{C} \otimes V_{1}^{*} \otimes V_{2}\right)-h^{0}\left(C, K_{C}(-x-y) \otimes V_{1}^{*} \otimes V_{2}\right)=2 r_{1} r_{2}
$$

Since $V_{1}^{*} \otimes V_{2}$ is semistable, this is equivalent to the vanishing of $h^{0}\left(C, V_{2}^{*} \otimes\right.$ $\left.V_{1}(x+y)\right)$. In the below, we will show this vanishing.

If $r=2$, then V_{1} and V_{2} are line bundles and $\varepsilon=1$. In this case, $h^{0}\left(C, V_{2}^{*} \otimes\right.$ $\left.V_{1}(x+y)\right)>0$ for some x, y if and only if $V_{1}^{*} \otimes V_{2} \in C+C-C$ in $\operatorname{Pic}^{1}(C)$. Since $g \geq 4$, we can take $V_{1}^{*} \otimes V_{2}$ outside the locus $C+C-C$.

If $r \geq 3$, we may use the "twisted Brill-Noether for one section" proven by Russo and Teixidor i Bigas([8], Theorem 0.3):

For a general $G \in U\left(r_{G}, d_{G}\right)$, the locus of the bundles H inside $U\left(r_{H}, d_{H}\right)$ such that $h^{0}\left(H^{*} \otimes G\right)>0$ has dimension

$$
\gamma:=r_{H}\left(r_{H}-r_{G}\right)(g-1)+r_{H} d_{G}-r_{G} d_{H},
$$

if it is nonempty.
First assume that $r_{2}>1$ and apply this to $G=V_{1}(x+y)$ and $H=V_{2}$: for a fixed $G \in U\left(r_{1}, d_{1}+2 r_{1}\right)$, consider the locus of the bundles $H \in S U\left(r_{2}, d_{2}\right)$ admitting a nonzero map $H \rightarrow G$. Since we may choose $\operatorname{det} H$ general by varying $\operatorname{det} G$, we can reduce the above dimension γ to $\gamma-g$. We get

$$
\gamma-g=r_{2}\left(r_{2}-r_{1}\right)(g-1)+r_{2}\left(d_{1}+2 r_{1}\right)-r_{1} d_{2}-g
$$

$$
=r_{2}^{2}(g-1)-r_{1} r_{2}(g-3)-\varepsilon-g
$$

and it can be checked that

$$
\gamma-g<\left(r_{2}^{2}-1\right)(g-1)-2=\operatorname{dim} S U\left(r_{2}, d_{2}\right)-2
$$

This implies that for a general choice of $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$, we get the vanishing of $h^{0}\left(C, V_{2}^{*} \otimes V_{1}(x+y)\right)$ for any $x, y \in C$.

If $r_{2}=1$, then $r_{1}>1$ and the same argument works through for $G=$ $V_{2}^{*}(x+y)$ and $H=V_{1}^{*}$.

Hence for a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$, we have a scroll $\Upsilon\left(\mathbb{P H o m}\left(V_{2}, V_{1}\right)\right)$ inside $P\left(V_{1}, V_{2}\right)$. This locus provides a criteria on the existence of a subbundle V^{\prime} of rank r_{2} in Lemma 2.4.

Lemma 3.3. Assume $g \geq 4$. Suppose that V_{1} and V_{2} in the nontrivial extension (2.1) are Lange-stable. Then V has a subbundle $V^{\prime} \neq V_{1}$ of rank r_{2} and degree $d_{2}-1$ if and only if the associated point $v \in P\left(V_{1}, V_{2}\right)$ lies on the scroll $\Upsilon\left(\mathbb{P H o m}\left(V_{2}, V_{1}\right)\right)$.

Proof. By Lemma 2.4, the subbundle $V^{\prime} \neq V_{1}$ of rank r_{2} and degree $d_{2}-1$ induces a sheaf injection $V^{\prime}(\rightarrow V) \rightarrow V_{2}$. In other words, there is an elementary transformation

$$
0 \rightarrow V^{\prime} \rightarrow V_{2} \rightarrow \mathbb{C}_{x} \rightarrow 0
$$

for some $x \in C$ which lifts to $V \in H^{1}\left(C, V_{2}^{*} \otimes V_{1}\right)$. This is equivalent to that

$$
v \in \mathbb{P} \operatorname{ker}\left[H^{1}\left(C, V_{2}^{*} \otimes V_{1}\right) \rightarrow H^{1}\left(C,\left(V^{\prime}\right)^{*} \otimes V_{1}\right)\right]
$$

for the induced map on the extension spaces. By definition of Υ, this is equivalent to that v lies on the image of the fiber $\left.\mathbb{P H o m}\left(V_{2}, V_{1}\right)\right|_{x}$.

Summarizing the results in this section, we get the following.
Proposition 3.4. For a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{i}$ where $0<i<r$, let P be the image of $P\left(V_{1}, V_{2}\right)$ inside \mathcal{M}. Let $0<j \neq i<r$.
(1) If $i+j \neq r$, then $P \cap R_{j}$ is empty.
(2) If $i+j=r$, then $P \cap R_{j}$ is the image of the scroll

$$
\Upsilon\left(\mathbb{P} \operatorname{Hom}\left(V_{2}, V_{1}\right)\right) \subset P\left(V_{1}, V_{2}\right)
$$

(3) In particular, R_{i} is not contained in R_{j}.

4. Rational curves

First we recall Sun's results in [9] on rational curves on \mathcal{M}.
Let $\phi: \mathbb{P}^{1} \rightarrow \mathcal{M}$ be a rational curve. Let $X=C \times \mathbb{P}^{1}$ together with the projections $f: X \rightarrow C$ and $\pi: X \rightarrow \mathbb{P}^{1}$. Since \mathcal{M} admits a universal bundle, there is a bundle E on X such that $\phi(t)=\left.E\right|_{C \times\{t\}}$ for each $t \in \mathbb{P}^{1}$. Its restriction to a general fiber $f^{-1}(\xi)=X_{\xi} \cong \mathbb{P}^{1}$ is of the form

$$
\left.E\right|_{X_{\xi}} \cong \bigoplus_{i=1}^{n} \mathcal{O}_{X_{\xi}}\left(\alpha_{1}\right)^{\oplus r_{i}}, \quad \alpha_{1}>\cdots>\alpha_{n}
$$

Tensoring E by $\pi^{*} \mathcal{O}\left(-\alpha_{n}\right)$, we may assume that $\alpha_{n}=0$ in this generic splitting type of E. Then E admits a Harder-Narasimhan filtration

$$
0=E_{0} \subset E_{1} \subset \cdots \subset E_{n}=E
$$

such that the $F_{i}=E_{i} / E_{i-1}$ are torsion free with generic splitting type $\left(\mathcal{O}\left(\alpha_{i}\right){ }^{\oplus r_{i}}\right)$ for each i. Let $F_{i}^{\prime}=F_{i} \otimes \pi^{*} \mathcal{O}_{\mathbb{P}^{1}}\left(-\alpha_{i}\right)$ so that they have generic splitting type $\left(\mathcal{O}^{\oplus r_{i}}\right)$. Let $\operatorname{deg}\left(E_{i}\right)$ denote the degree of E_{i} on the generic fiber of π.
Lemma 4.1 ([9], (2.1), (2.2), Lemma 2.2). (1) For the ample generator $\mathcal{L}_{\mathcal{M}}$ of $\operatorname{Pic}(\mathcal{M})$, we have
$\operatorname{deg} \phi^{*}\left(\mathcal{L}_{\mathcal{M}}\right)=r \sum_{i=1}^{n} c_{2}\left(F_{i}^{\prime}\right)+\sum_{i=1}^{n-1}\left[r k\left(E_{i}\right) \operatorname{deg}(E)-r k(E) \operatorname{deg}\left(E_{i}\right)\right]\left(\alpha_{i}-\alpha_{i+1}\right)$.
(2) Any torsion free sheaf \mathcal{E} on X with generic splitting type $\left(\mathcal{O}^{\oplus r_{i}}\right)$ must have $c_{2}(\mathcal{E}) \geq 0$. Also, $c_{2}(\mathcal{E})=0$ if and only if $\mathcal{E}=f^{*} W$ where W is a locally free sheaf on C.

Combining the lemma with our discussion in previous sections, we get the following.

Proposition 4.2. Assume $g \geq 4$, let $0<\varepsilon<r$.
(1) For a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$, consider the morphism $P\left(V_{1}, V_{2}\right) \rightarrow \mathcal{M}$. For every line on $P\left(V_{1}, V_{2}\right)$, its image inside \mathcal{M} has degree ε.
(2) Any smooth rational curve ϕ on \mathcal{M} of degree ε which passes through a general point of R_{ε} is an image of a line on $P\left(V_{1}, V_{2}\right)$ for some $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$.
(3) For each ε, the locus swept out by the rational curves on \mathcal{M} of degree $\leq \varepsilon$ consists of ε irreducible components whose closures are given by $R_{1}, \ldots, R_{\varepsilon}$.

Proof. (1) This is immediate from (4.1).
(2) By Lemma 2.7, a general point V of R_{ε} is contained in the image of $P\left(V_{1}, V_{2}\right)$ for some general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$. By Lemma 2.4 and Lemma 3.3, V_{1} is the unique subbundle of V violating the inequality for the $(1,1)$-stability of V.

Now assume that ϕ passes through $V \in R_{\varepsilon}$. By (4.1), $\operatorname{deg} \phi=\varepsilon<r$ implies that $n=2, c_{2}\left(F_{i}^{\prime}\right)=0$, and $\alpha_{1}=1$. Also by Lemma 4.1 (2),

$$
F_{1}=E_{1}=f^{*}\left(V_{1}\right) \otimes \pi^{*} \mathcal{O}_{\mathbb{P}^{1}}(1) \text { and } F_{2}=E_{2} / E_{1}=f^{*}\left(V_{2}\right) .
$$

Hence we get the exact sequence

$$
0 \rightarrow f^{*}\left(V_{1}\right) \otimes \pi^{*} \mathcal{O}_{\mathbb{P}^{1}}(1) \rightarrow E \rightarrow f^{*}\left(V_{2}\right) \rightarrow 0
$$

This shows that ϕ is an image of a line on $P\left(V_{1}, V_{2}\right)$.
(3) By Proposition 3.4(3), R_{i} is not contained in R_{j} if $j \neq i$. The images of $P\left(V_{1}, V_{2}\right)$ for $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{\varepsilon}$ are dense in R_{ε} by Lemma 2.7. By Proposition $4.2(1)$, the images of the lines on $P\left(V_{1}, V_{2}\right)$ are rational curves of degree ε. Hence it suffices to show that any rational curve ϕ of degree ε is contained in $R_{1} \cup \cdots \cup R_{\varepsilon}$. Indeed, by the formula (4.1), every point on a curve ϕ of
degree $\varepsilon<r$ corresponds to a bundle admitting a subbundle V_{1} such that $\operatorname{rk}\left(V_{1}\right) d-r \operatorname{deg}\left(V_{1}\right) \leq \varepsilon$.

For $\varepsilon=1$, it is easy to see that there are a projective bundle $\mathcal{P} \rightarrow \mathcal{D}_{1}$ whose fiber at $\left(V_{1}, V_{2}\right)$ is $P\left(V_{1}, V_{2}\right)$, and a universal bundle $U \rightarrow C \times \mathcal{P}$ which induces a rational map $\mathcal{P} \rightarrow \mathcal{M}$. In this case, a stronger version of Proposition 4.2(2) has been proven.

Proposition 4.3. (1) ([9], Theorem 2) The classifying map $\mathcal{P} \rightarrow \mathcal{M}$ is a morphism whose image coincides with R_{1}. And every line on \mathcal{M} is an image of a line on $P\left(V_{1}, V_{2}\right)$ for some $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$.
(2) ([5], §4) Moreover, $\Phi: P\left(V_{1}, V_{2}\right) \rightarrow \mathcal{M}$ is an embedding for a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$.

Consider a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$ so that $P\left(V_{1}, V_{2}\right)$ is embedded in \mathcal{M}. We denote the image by P. By formula (4.1), $\left.\mathcal{L}_{\mathcal{M}}\right|_{P} \cong \mathcal{O}_{P}(1)$. The converse also holds.

Lemma 4.4. Assume $g \geq 4$. Let P be a subvariety of \mathcal{M} passing through a general point of R_{1} such that $P \cong \mathbb{P}^{k}$ for some k and $\left.\mathcal{L}_{\mathcal{M}}\right|_{P} \cong \mathcal{O}_{P}(1)$. Then P is the image of a k-dimensional linear subspace of $P\left(V_{1}, V_{2}\right)$ for some $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$.
Proof. As before, we may assume that P passes through an image of the point $V \in P\left(V_{1}, V_{2}\right)$ for a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$, such that V_{1} is the unique subbundle violating the $(1,1)$-stability of V. The proof of Proposition $4.2(2)$ shows that every line on P passing through V is an image of a line on $P\left(V_{1}, V_{2}\right)$. Hence P is contained in the image of $P\left(V_{1}, V_{2}\right)$.

Finally we give another proof of nonabelian Torelli theorem based on the above discussions. As was mentioned in $\S 1$, Sun [9] found a way to recover the curve C from the geometry of rational curves on $\mathcal{M}=S U(r, d)$ of degree r passing through a general point of \mathcal{M}. In the following, we give a way to recover C from the geometry of rational curves on \mathcal{M} of degree 1 and $r-1$, which sweep out a small sublocus of \mathcal{M}.

Proposition 4.5. Let C_{1} and C_{2} be smooth algebraic curves of genus $g \geq 4$. If $S U_{C_{1}}(r, d) \cong S U_{C_{2}}(r, d)$, then $C_{1} \cong C_{2}$.

Proof. By Proposition 4.2(3), each irreducible variety $R_{\varepsilon}, 0<\varepsilon<r$, is characterized in terms of the rational curves of degree $\leq \varepsilon$. More precisely, R_{ε} is the closure of $R_{\varepsilon}^{\circ} \backslash R_{\varepsilon-1}^{\circ}$, where R_{k}° is the sublocus swept out by the rational curves of degree $\leq k$.

By Lemma 4.4, we can pick out a subvariety P of R_{1} which is the image of $P\left(V_{1}, V_{2}\right)$ for a general $\left(V_{1}, V_{2}\right) \in \mathcal{D}_{1}$. Note that the composition $\mathbb{P H o m}\left(V_{2}, V_{1}\right) \rightarrow P\left(V_{1}, V_{2}\right) \rightarrow \mathcal{M}$ is an embedding by Lemma 3.2 and Proposition 4.3(2). If $r>2$, then the locus $P \cap R_{r-1}$ is isomorphic to a scroll over C by Proposition 3.4(2).

Now assume $r=2$. We claim that the locus of points $v \in P$ such that $v \in l$ for a line l on \mathcal{M} which is not contained in P, is isomorphic to C. Indeed, if there is a line l on \mathcal{M} which is not contained in P such that $v \in l \cap P$, then the associated bundle V admits two different (line) subbundles V_{1} and V_{1}^{\prime} of degree $d_{1}\left(=d_{2}-1\right)$ by Proposition $4.3(1)$, and vice versa. By Lemma 3.3, the locus of such bundles inside P is the image of $\mathbb{P H o m}\left(V_{2}, V_{1}\right) \cong C$.

In this way, we can recover C from $\mathcal{M}=S U_{C}(r, d)$ using the properties of \mathcal{M} as a projective variety with $\operatorname{Pic}(\mathcal{M}) \cong \mathbb{Z}$.
Acknowledgement. The author would like to thank Professor Jun-Muk Hwang for the suggestions on the earlier version of this paper, and the referee for several suggestions which were useful to improve the presentation.

References

[1] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53-94.
[2] J.-M. Hwang, Hecke curves on the moduli space of vector bundles over an algebraic curve, Proceedings of the Symposium Algebraic Geometry in East Asia, Kyoto. (2001), 155-164.
[3] J. Kollár, Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996.
[4] H. Lange, Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann. 262 (1983), no. 4, 447-459.
[5] N. Mok and X. Sun, Remarks on lines and minimal rational curves, Sciences in China Series A: Mathematics 52 (2009), no. 6, 1-16.
[6] M. S. Narasimhan and S. Ramanan, Geometry of Hecke cycles. I, C. P. Ramanujam-a tribute, pp. 291-345, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978.
[7] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973), 69-84.
[8] B. Russo and M. Teixidor i Bigas, On a conjecture of Lange, J. Algebraic Geom. 8 (1999), no. 3, 483-496.
[9] X. Sun, Minimal rational curves on moduli spaces of stable bundles, Math. Ann. 331 (2005), no. 4, 925-937.

