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LOCI OF RATIONAL CURVES OF SMALL DEGREE

ON THE MODULI SPACE OF VECTOR BUNDLES

Insong Choe

Abstract. For a smooth algebraic curve C of genus g ≥ 4, let SUC(r, d)

be the moduli space of semistable bundles of rank r ≥ 2 over C with fixed
determinant of degree d. When (r, d) = 1, it is known that SUC(r, d) is
a smooth Fano variety of Picard number 1, whose rational curves pass-
ing through a general point have degree ≥ r with respect to the ample

generator of Pic(SUC(r, d)). In this paper, we study the locus swept out
by the rational curves on SUC(r, d) of degree < r. As a by-product, we
present another proof of Torelli theorem on SUC(r, d).

1. Introduction

Let C be a smooth algebraic curve over C of genus g ≥ 4. Let M :=
SUC(r, d) be the moduli space of semistable bundles of rank r ≥ 2 over C with
fixed determinant of degree d. Throughout this paper, we assume (r, d) = 1.
In this case, it is known that M is a smooth Fano variety of Picard number 1.
Hence it is an important project to study the rational curves on M using the
modular properties.

In general, for a Fano manifold N of Picard number 1, the index of N is
defined by the number i such that −KN

∼= ON (i), where ON (1) is the ample
generator of Pic(N). In analogy with the case of projective hypersurfaces, a
rational curve l ⊂ N is called a line on N if the index of N equals −KN · l.
Also we say that l has degree k if −KN · l equals k times the index of N . It
is an open question if every Fano manifold of Picard number 1 has a line ([3],
p. 248).

As a Fano manifold, M has index 2 ([1]). Ramanan [7] found a family of lines
on M, but they sweep out a sublocus of M of large codimension. It has also
been observed thatM is covered by rational curves of degree r, which are called
Hecke curves ([6], Corollary 5.16). Hwang ([2], Question 1) asked if the Hecke
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curves are the rational curves of minimal degree passing through a general
point of M. This was recently answered affirmatively by Sun ([9], Theorem 1).
As a corollary, he gave another proof of nonabelian Torelli theorem. He also
proved that there are no lines on M different from those found by Ramanan
([9], Theorem 2).

The aim of this paper is to get more detailed information on the rational
curves on M of degree between 1 and r. In particular, we show that the locus
inside M swept out by the rational curves of degree < r, consists of r − 1
irreducible components, each of which comes from certain extensions of fixed
type. We also study the intersections of these components. As a by-product, we
get another way to recover the curve C from the moduli space M = SUC(r, d).

This paper is organized as follows. In §2, we study certain extension spaces
parameterizing the bundles which are not (1, 1)-stable. It will turn out that
these spaces provide the locus of rational curves of small degree.

In §3, we study the intersections of the images of the extension spaces inside
M. In most cases, their intersection is empty, but there are special pairs whose
intersection property can be described in terms of certain scroll over C.

In §4, we first briefly review Sun’s results on rational curves on M. Com-
bining with the informations from §2 and §3, we prove in Proposition 4.2 that
for every ε with 1 ≤ ε ≤ r−1, the locus in M swept out by the rational curves
of degree ≤ ε consists of ε irreducible components. Finally in Proposition 4.5,
we observe that these results on the loci of the rational curves of small degree
provide us another proof of Torelli theorem.

2. Extension spaces

From now on, we fix a curve C of genus g ≥ 4 and simplify our notation so
that U(ρ, δ) denotes the moduli space of semistable bundles over C of rank ρ
and degree δ. Let Us(ρ, δ) be the open subset of U(ρ, δ) consisting of stable
bundles. Also for a line bundle Λ on C, let SU(ρ,Λ) be the moduli space of
semistable bundles over C of rank ρ with determinant Λ.

Definition 2.1. (1) For each 0 < ρ′ < ρ and W ∈ Us(ρ, δ), define

sρ′(W ) := min{ρ′δ − ρdeg(W ′)},

where the minimum is taken over the subbundles W ′ of W of rank ρ′.
(2) For any fixed integers s ≥ 0 and ρ′, we define

Uρ′,s(ρ, δ) := {W ∈ Us(ρ, δ) : sρ′(W ) > s}.

(3) We say that a bundle W ∈ U(ρ, δ) is Lange-stable if W ∈ Uρ′,s(ρ, δ)
where s = ρ′(ρ− ρ′)(g − 1)− 1 for every ρ′.

(4) A bundle W ∈ U(ρ, δ) is called (1, 1)-stable if W ∈ Uρ′,ρ(ρ, δ) for every
ρ′ (cf. [6], Definition 5.1).
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Lemma 2.2. (1) For each ρ′, if s < ρ′(ρ − ρ′)(g − 1), then Uρ′,s(ρ, δ) and
Uρ′,s(ρ, δ) ∩ SU(ρ,Λ) are nonempty open subsets of U(ρ, δ) and SU(ρ,Λ) re-
spectively.

(2) A general bundle W ∈ SU(ρ,Λ) is Lange-stable and (1, 1)-stable.

Remark 2.3. The following inequalities on the slope µ(W ) := deg(W )/rk(W )
will be used in the proof below.

(1) For s = ρ′(ρ− ρ′)(g − 1)− 1, the inequality defining Uρ′,s(ρ, δ) implies

µ(W )− µ(W ′) ≥ 3(ρ− ρ′)/ρ,

since g ≥ 4. Also, we note that 2(ρ− ρ′)/ρ ≥ 1/ρ′ for any 1 ≤ ρ′ < ρ.
(2) The inequality defining (1, 1)-stability is equivalent to µ(W )− µ(W ′) >

1/ρ′.

Proof. (1) By dimension count, one can show that a general bundleW ∈ U(ρ, δ)
satisfies

sρ′(E) ≥ ρ′(ρ− ρ′)(g − 1),

see [4], p. 448. The statement for SU(ρ,Λ) follows from the observation that
for every line bundle L of degree 0, we have sρ′(W ) = sρ′(W ⊗ L).

(2) The statement on Lange-stability is an immediate consequence of (1).
Also by Remark 2.3, Lange-stability implies (1, 1)-stability. □

Now we consider the bundles V ∈ M = SU(r, d) which are not (1, 1)-stable,
or equivalently, the bundles which admit a subbundle V1 such that

rk(V1)d− r deg(V1) ≤ r.

Here the equality cannot hold since (r, d) = 1. For each integer 0 < ε < r,
let r1 and d1 be the integers satisfying 0 < r1 < r and r1d − rd1 = ε. Let
r2 = r − r1 and d2 = d − d1. For V1 ∈ U(r1, d1) and V2 ∈ U(r2, d2), consider
those bundles V associated with nontrivial extensions

(2.1) 0 → V1 → V → V2 → 0.

Note the following identities: for 0 < r1, r2, ε < r,

(2.2) r1d− rd1 = rd2 − r2d = r1d2 − r2d1 = ε.

We have the following which generalizes and refines [7], Lemma 2.1 and [9],
Lemma 3.1.

Lemma 2.4. Suppose that V1 and V2 in the nontrivial extension (2.1) are
Lange-stable. Then for a proper subbundle V ′ of V of rank r′, the inequality

µ(V )− µ(V ′) < 1/r′

implies that rk(V ′) = r2, deg(V
′) = d2 − 1, and the composition V ′ → V → V2

is a sheaf injection, unless V ′ coincides with the subbundle V1. In particular,
V ∈ Ur′,r(r, d) for each r′ ̸= r1, r2.
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Proof. We need to show that

µ(V )− µ(V ′) > 1/r′

for every subbundle V ′ of rank r′ and degree d′ if V ′ is neither V1 nor a bundle
of rank r2 with the specified properties. This can be checked case by case. Let
V ′
2 be the image of the composition V ′ → V → V2 and let V ′

1 be the kernel of
V ′ → V ′

2 . Let r′1 and d′1 (resp. r′2 and d′2) be the rank an degree of V ′
1 (resp.

V ′
2).
(i) First assume V ′

2 = 0 and V ′ = V ′
1 ̸= V1. Since V ′ is a subbundle of V ,

r′ = r′1 < r1. Hence by the identity (2.2) and the (1, 1)-stability of V1, we get

µ(V )− µ(V ′) = µ(V )− µ(V1) + µ(V1)− µ(V ′)

>
ε

rr1
+

1

r′1
>

1

r′1
=

1

r′
.

(ii) Next assume V ′
1 = 0 and V ′ = V ′

2 ̸= V2. If r
′
2 = r2, then d′2 < d2 and

µ(V )− µ(V ′) =
r2d− rd′2

rr2
=

r(d2 − d′2)− ε

rr2
.

Thus µ(V )− µ(V ′) > 1/r2 = 1/r′ if and only if d2 − d′2 ≥ 2.
If r′2 < r2, by the similar argument as (i), we get µ(V )− µ(V ′) > 1/r′2 = 1/r′.

(iii) Now assume 0 ̸= V ′
1 ̸= V1 and V ′

2 = V2. By Remark 2.3 (1) and (2.2),
we get

µ(V ′
1) = (µ(V ′

1)− µ(V1)) + µ(V1)

≤ −3(r1 − r′1)

r1
+ µ(V )− ε

rr1
.

Thus,

r′µ(V ′) = µ(V ′
1)r

′
1 + µ(V2)r2

≤
(
µ(V )− 3(r1 − r′1)

r1
− ε

rr1

)
r′1 +

(
µ(V ) +

ε

rr2

)
r2

= r′µ(V )− 3(r1 − r′1)

r1
· r′1 −

r′1ε

rr1
+

ε

r

< r′µ(V )− 2(r1 − r′1)

r1
· r′1 −

(r1 − r′1)

r1
· r′1 +

(r1 − r′1)

r1

≤ r′µ(V )− 2(r1 − r′1)

r1
· r′1

≤ r′µ(V )− 1.

(iv) The remaining cases (V ′
1 = V1, 0 ̸= V ′

2 ̸= V2) and (0 ̸= V ′
1 ̸= V1, 0 ̸=

V ′
2 ̸= V2) can be checked similarly. □

For a fixed line bundle Λ ∈ Picd(C), consider the subvariety of U(r1, d1)×
U(r2, d2) defined by

Dε := {(V1, V2) : detV1 ⊗ detV2
∼= Λ},
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where r1, d1 and r2, d2 are determined by ε and the identities (2.2). Let
P (V1, V2) := PH1(C, V ∗

2 ⊗ V1) be the projective space parameterizing the non-
trivial extensions up to nonzero scalars.

Lemma 2.5. If (V1, V2) ∈ Dε is general, then the classifying map

Φ : P (V1, V2) → SU(r,Λ)

is an injective morphism.

Proof. We assume that V1 and V2 are Lange-stable. By Lemma 2.4, every
bundle V associated to a point of P (V1, V2) is stable. We claim that there
exists a unique injection V1 → V up to homothety, which implies that Φ is an
injective morphism. When r1 ̸= r2, this was already shown in Lemma 2.4.

Now assume r1 = r2 and suppose that there are two different subbundle
maps, say α, β : V1 → V , where α induces the original exact sequence

0 → V1
α→ V → V2 → 0.

Applying Lemma 2.4 for V ′ = (β : V1 → V ), we deduce that d1 = d2 − 1

and the composition V1
β→ V → V2 is a sheaf injection. This implies that the

induced map α ⊕ β : V1 ⊕ V1 → V is also a sheaf injection, whose quotient
should be a skyscraper sheaf Cx for some x ∈ C. Hence for some λ ∈ C, the
map given by the composition

V1
(id,λ·id)−→ V1 ⊕ V1

α⊕β−→ V

has rank r1 − 1 at x. Taking saturation, we get a nonzero map Ṽ1 → V , where

deg Ṽ1 = d1 + 1. This contradicts to the stability of V (The final step of this
argument appeared in the proof of [6] Lemma 5.6, which was concerned with
the case of rank 2). □

Definition 2.6. For each integer ε with 0 < ε < r, let Rε be the subset of
M = SU(r, d) consisting of the bundles which admit a subbundle of rank r1
and degree d1 with r1d− rd1 = ε.

Note that V ∈ M is not (1, 1)-stable if and only if V ∈ Rε for some ε.

Lemma 2.7. For each 0 < ε < r, Rε is nonempty and irreducible. A general
V ∈ Rε is contained in the image of P (V1, V2) for some general (V1, V2) ∈ Dε.

Proof. The nonemptyness of Rε follows from Lemma 2.4. The remaining state-
ments follow from a more general statement proven by Teixidor i Bigas (see
[8], Proposition 1.6). In fact, the case of U(r, d) was worked out there, but the
same argument applies to SU(r, d). □

3. Scrolls

Now we study the intersection of Ri and Rj inside M for 0 < i ̸= j < r.
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Lemma 3.1. Consider (V1, V2) ∈ Di, where V1 and V2 are Lange-stable. If
i+ j ̸= r, then the image of P (V1, V2) inside M does not intersect Rj.

Proof. Consider V ∈ P (V1, V2). By Lemma 2.4, there are at most two subbun-
dles, V1 and W1, which violate the inequality for the (1, 1)-stability of V . Also,
rk(W1) = r − rk(V1) and deg(W1) = d − deg(V1) − 1. If V ∈ Rj , this means
that V admits a subbundle W1 such that j = rk(W1)d − r deg(W1). Hence
from the identity (2.2) defining i, we see that i+ j = r. □

To study the case i+ j = r in more detail, we need first to consider a scroll
in P (V1, V2). For (V1, V2) ∈ Dε, 0 < ε < r, consider the rational map

Υ : PHom(V2, V1) 99K P (V1, V2)

defined by the complete linear system

P (V1, V2) ∼= PH0(C, KC ⊗ V ∗
1 ⊗ V2)

∨

∼= PH0(PHom(V2, V1), p
∗KC ⊗O(1))∨,

where p : PHom(V2, V1) → C is the projection.

Lemma 3.2. Assume g ≥ 4. If (V1, V2) ∈ Dε is general. Then the map Υ is
an embedding.

Proof. For any x ∈ C, the line bundle p∗KC ⊗ O(1) restricted to the fiber
p−1(x) is very ample. Thus it is very ample on PHom(V2, V1) if for every
x, y ∈ C, the case x = y included, the restriction map

H0(PHom(V2, V1), p
∗KC ⊗O(1)) → H0(π−1(x+ y), p∗KC ⊗O(1)|π−1(x+y))

is surjective. By the projection formula, this is guaranteed if for any x, y ∈ C,

h0(C,KC ⊗ V ∗
1 ⊗ V2)− h0(C,KC(−x− y)⊗ V ∗

1 ⊗ V2) = 2r1r2.

Since V ∗
1 ⊗ V2 is semistable, this is equivalent to the vanishing of h0(C, V ∗

2 ⊗
V1(x+ y)). In the below, we will show this vanishing.

If r = 2, then V1 and V2 are line bundles and ε = 1. In this case, h0(C, V ∗
2 ⊗

V1(x + y)) > 0 for some x, y if and only if V ∗
1 ⊗ V2 ∈ C + C − C in Pic1(C).

Since g ≥ 4, we can take V ∗
1 ⊗ V2 outside the locus C + C − C.

If r ≥ 3, we may use the “twisted Brill-Noether for one section” proven by
Russo and Teixidor i Bigas([8], Theorem 0.3):

For a general G ∈ U(rG, dG), the locus of the bundles H inside U(rH , dH)
such that h0(H∗ ⊗G) > 0 has dimension

γ := rH(rH − rG)(g − 1) + rHdG − rGdH ,

if it is nonempty.
First assume that r2 > 1 and apply this to G = V1(x+ y) and H = V2: for

a fixed G ∈ U(r1, d1 + 2r1), consider the locus of the bundles H ∈ SU(r2, d2)
admitting a nonzero map H → G. Since we may choose detH general by
varying detG, we can reduce the above dimension γ to γ − g. We get

γ − g = r2(r2 − r1)(g − 1) + r2(d1 + 2r1)− r1d2 − g
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= r22(g − 1)− r1r2(g − 3)− ε− g

and it can be checked that

γ − g < (r22 − 1)(g − 1)− 2 = dimSU(r2, d2)− 2.

This implies that for a general choice of (V1, V2) ∈ Dε, we get the vanishing of
h0(C, V ∗

2 ⊗ V1(x+ y)) for any x, y ∈ C.
If r2 = 1, then r1 > 1 and the same argument works through for G =

V ∗
2 (x+ y) and H = V ∗

1 . □
Hence for a general (V1, V2) ∈ Dε, we have a scroll Υ(PHom(V2, V1)) inside

P (V1, V2). This locus provides a criteria on the existence of a subbundle V ′ of
rank r2 in Lemma 2.4.

Lemma 3.3. Assume g ≥ 4. Suppose that V1 and V2 in the nontrivial exten-
sion (2.1) are Lange-stable. Then V has a subbundle V ′ ̸= V1 of rank r2 and
degree d2 − 1 if and only if the associated point v ∈ P (V1, V2) lies on the scroll
Υ(PHom(V2, V1)).

Proof. By Lemma 2.4, the subbundle V ′ ̸= V1 of rank r2 and degree d2 − 1
induces a sheaf injection V ′(→ V ) → V2. In other words, there is an elementary
transformation

0 → V ′ → V2 → Cx → 0

for some x ∈ C which lifts to V ∈ H1(C, V ∗
2 ⊗ V1). This is equivalent to that

v ∈ P ker
[
H1(C, V ∗

2 ⊗ V1) → H1(C, (V ′)∗ ⊗ V1)
]

for the induced map on the extension spaces. By definition of Υ, this is equiv-
alent to that v lies on the image of the fiber PHom(V2, V1)|x. □

Summarizing the results in this section, we get the following.

Proposition 3.4. For a general (V1, V2) ∈ Di where 0 < i < r, let P be the
image of P (V1, V2) inside M. Let 0 < j ̸= i < r.

(1) If i+ j ̸= r, then P ∩Rj is empty.
(2) If i+ j = r, then P ∩Rj is the image of the scroll

Υ(PHom(V2, V1)) ⊂ P (V1, V2).

(3) In particular, Ri is not contained in Rj.

4. Rational curves

First we recall Sun’s results in [9] on rational curves on M.
Let ϕ : P1 → M be a rational curve. Let X = C × P1 together with the

projections f : X → C and π : X → P1. Since M admits a universal bundle,
there is a bundle E on X such that ϕ(t) = E|C×{t} for each t ∈ P1. Its

restriction to a general fiber f−1(ξ) = Xξ
∼= P1 is of the form

E|Xξ
∼=

n⊕
i=1

OXξ
(α1)

⊕ri , α1 > · · · > αn.
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Tensoring E by π∗O(−αn), we may assume that αn = 0 in this generic splitting
type of E. Then E admits a Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that the Fi=Ei/Ei−1 are torsion free with generic splitting type (O(αi)
⊕ri)

for each i. Let F ′
i = Fi ⊗ π∗OP1(−αi) so that they have generic splitting type

(O⊕ri). Let deg(Ei) denote the degree of Ei on the generic fiber of π.

Lemma 4.1 ([9], (2.1), (2.2), Lemma 2.2). (1) For the ample generator LM
of Pic(M), we have
(4.1)

deg ϕ∗(LM) = r
n∑

i=1

c2(F
′
i ) +

n−1∑
i=1

[rk(Ei) deg(E)− rk(E) deg(Ei)] (αi − αi+1).

(2) Any torsion free sheaf E on X with generic splitting type (O⊕ri) must
have c2(E) ≥ 0. Also, c2(E) = 0 if and only if E = f∗W where W is a locally
free sheaf on C.

Combining the lemma with our discussion in previous sections, we get the
following.

Proposition 4.2. Assume g ≥ 4, let 0 < ε < r.
(1) For a general (V1, V2) ∈ Dε, consider the morphism P (V1, V2) → M.

For every line on P (V1, V2), its image inside M has degree ε.
(2) Any smooth rational curve ϕ on M of degree ε which passes through a

general point of Rε is an image of a line on P (V1, V2) for some (V1, V2) ∈ Dε.
(3) For each ε, the locus swept out by the rational curves on M of degree ≤ ε

consists of ε irreducible components whose closures are given by R1, . . . , Rε.

Proof. (1) This is immediate from (4.1).
(2) By Lemma 2.7, a general point V of Rε is contained in the image of

P (V1, V2) for some general (V1, V2) ∈ Dε. By Lemma 2.4 and Lemma 3.3, V1 is
the unique subbundle of V violating the inequality for the (1, 1)-stability of V .

Now assume that ϕ passes through V ∈ Rε. By (4.1), deg ϕ = ε < r implies
that n = 2, c2(F

′
i ) = 0, and α1 = 1. Also by Lemma 4.1 (2),

F1 = E1 = f∗(V1)⊗ π∗OP1(1) and F2 = E2/E1 = f∗(V2).

Hence we get the exact sequence

0 → f∗(V1)⊗ π∗OP1(1) → E → f∗(V2) → 0.

This shows that ϕ is an image of a line on P (V1, V2).
(3) By Proposition 3.4(3), Ri is not contained in Rj if j ̸= i. The images

of P (V1, V2) for (V1, V2) ∈ Dε are dense in Rε by Lemma 2.7. By Proposition
4.2(1), the images of the lines on P (V1, V2) are rational curves of degree ε.
Hence it suffices to show that any rational curve ϕ of degree ε is contained
in R1 ∪ · · · ∪ Rε. Indeed, by the formula (4.1), every point on a curve ϕ of
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degree ε < r corresponds to a bundle admitting a subbundle V1 such that
rk(V1)d− r deg(V1) ≤ ε. □

For ε = 1, it is easy to see that there are a projective bundle P → D1 whose
fiber at (V1, V2) is P (V1, V2), and a universal bundle U → C×P which induces
a rational map P → M. In this case, a stronger version of Proposition 4.2(2)
has been proven.

Proposition 4.3. (1) ([9], Theorem 2) The classifying map P → M is a
morphism whose image coincides with R1. And every line on M is an image
of a line on P (V1, V2) for some (V1, V2) ∈ D1.

(2) ([5], §4) Moreover, Φ : P (V1, V2) → M is an embedding for a general
(V1, V2) ∈ D1. □

Consider a general (V1, V2) ∈ D1 so that P (V1, V2) is embedded in M. We
denote the image by P . By formula (4.1), LM|P ∼= OP (1). The converse also
holds.

Lemma 4.4. Assume g ≥ 4. Let P be a subvariety of M passing through
a general point of R1 such that P ∼= Pk for some k and LM|P ∼= OP (1).
Then P is the image of a k-dimensional linear subspace of P (V1, V2) for some
(V1, V2) ∈ D1.

Proof. As before, we may assume that P passes through an image of the point
V ∈ P (V1, V2) for a general (V1, V2) ∈ D1, such that V1 is the unique subbundle
violating the (1, 1)-stability of V . The proof of Proposition 4.2(2) shows that
every line on P passing through V is an image of a line on P (V1, V2). Hence P
is contained in the image of P (V1, V2). □

Finally we give another proof of nonabelian Torelli theorem based on the
above discussions. As was mentioned in §1, Sun [9] found a way to recover
the curve C from the geometry of rational curves on M = SU(r, d) of degree
r passing through a general point of M. In the following, we give a way to
recover C from the geometry of rational curves on M of degree 1 and r − 1,
which sweep out a small sublocus of M.

Proposition 4.5. Let C1 and C2 be smooth algebraic curves of genus g ≥ 4.
If SUC1(r, d)

∼= SUC2(r, d), then C1
∼= C2.

Proof. By Proposition 4.2(3), each irreducible variety Rε, 0 < ε < r, is char-
acterized in terms of the rational curves of degree ≤ ε. More precisely, Rε is
the closure of R◦

ε \ R◦
ε−1, where R◦

k is the sublocus swept out by the rational
curves of degree ≤ k.

By Lemma 4.4, we can pick out a subvariety P of R1 which is the im-
age of P (V1, V2) for a general (V1, V2) ∈ D1. Note that the composition
PHom(V2, V1) → P (V1, V2) → M is an embedding by Lemma 3.2 and Proposi-
tion 4.3(2). If r > 2, then the locus P ∩ Rr−1 is isomorphic to a scroll over C
by Proposition 3.4(2).
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Now assume r = 2. We claim that the locus of points v ∈ P such that v ∈ l
for a line l on M which is not contained in P , is isomorphic to C. Indeed, if
there is a line l on M which is not contained in P such that v ∈ l ∩ P , then
the associated bundle V admits two different (line) subbundles V1 and V ′

1 of
degree d1(= d2 − 1) by Proposition 4.3(1), and vice versa. By Lemma 3.3, the
locus of such bundles inside P is the image of PHom(V2, V1) ∼= C.

In this way, we can recover C from M = SUC(r, d) using the properties of
M as a projective variety with Pic(M) ∼= Z. □
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