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DAGGER-SHARP TITS OCTAGONS

BERNHARD MUHLHERR AND RICHARD M. WEISS

ABSTRACT. The spherical buildings associated with absolutely simple al-
gebraic groups of relative rank 2 are all Moufang polygons. Tits polygons
are a more general class of geometric structures that includes Moufang
polygons as a special case. Dagger-sharp Tits n-gons exist only for n = 3,
4, 6 and 8. Moufang octagons were classified by Tits. We show here that
there are no dagger-sharp Tits octagons that are not Moufang. As part
of the proof it is shown that the same conclusion holds for a certain class
of dagger-sharp Tits quadrangles.

1. Introduction

A generalized polygon is the same thing as an irreducible spherical building
of rank 2. Tits observed that the spherical buildings of rank 2 that arise from
absolutely simple algebraic groups all satisfy a property he called the Moufang
condition. In [5], he classified Moufang octagons. He showed, in particular,
that they all arise as the fixed point building of a polarity of a building of
type Fy. Subsequently, the complete classification of Moufang polygons was
given in [7].

The notion of a Tits polygon was introduced in [3]. A Tits polygon is a
bipartite graph I' in which for each vertex v, the set I', of vertices adjacent
to v is endowed with a symmetric relation we call “opposite at v” satisfying
certain axioms. A Moufang polygon is the same thing as a Tits polygon all of
whose local opposition relations are trivial.

Let P denote the set of pairs (A, T'), where A is a spherical building of type
M satisfying the Moufang condition and T is a Tits index of absolute type M
and relative rank 2. Every pair (A,T) in P gives rise by a simple construction
to a Tits polygon whose automorphism group is canonically isomorphic to the
automorphism group of A preserving 7. We call the Tits polygons that arise
in this way the Tits polygons of index type. Moufang polygons are all Tits
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polygons of index type; this is the case that not just the relative rank but also
the absolute rank of T is 2.

For every irreducible spherical building A of rank at least 2, there exist Tits
indices T such that (A, T) € P. Thus the theory of Tits polygons allows us to
regard a spherical building of arbitrary rank at least 2 as a rank 2 structure to
which the methods developed in [7] can be applied.

With a few exceptions, Tits polygons of index type satisfy a condition we
call dagger-sharp. This is a natural condition on the action of the stabilizer of
an apartment on the corresponding root groups. It is trivially satisfied by all
Moufang polygons. Tits n-gons exist for every value of n (as was observed in
[3, 1.2.33]), but by [3, 1.6.14], dagger-sharp Tits n-gons exist only for n = 3, 4,
6 and 8.

Let k be an integer at least 3. We say that a Tits polygon is k-plump if for
each vertex v, the valency |T',| of v is not too small in an appropriate sense. All
Tits polygons of index type corresponding to a pair (A,T') in P are k-plump if
the field of definition of A contains at least & elements (by [3, 1.2.7]).

In [2, 5.11 and 5.12], we showed that all dagger-sharp Tits triangles are of
index type (or a variation defined over a simple associative ring that is infinite
dimensional over its center) and in [1, 7.7], we showed that all dagger-sharp Tits
hexagons are of index type. In [4], we proved a similar (but slightly weaker)
result for the Tits quadrangles of exceptional type.

The main goal of this article is to treat the case n = 8. We prove the
following:

Theorem 1.1. All 9-plump dagger-sharp Tits octagons are Moufang.

Our proof of Theorem 1.1 is a modification of Tits’ classification of Moufang
octagons in [5]. It exploits the existence of a Tits subquadrangle of indifferent
type. To make the proof work, we first have to prove Theorem 3.1, a classifi-
cation result for this class of Tits quadrangles. As a corollary, we obtain the
following:

Theorem 1.2. All5-plump dagger-sharp indifferent Tits quadrangles are Mou-
fang.

Our proof of Theorem 3.1 is, in turn, a modification of Tits’ unpublished
classification of indifferent Moufang quadrangles which eventually appeared in
[6].

We conjecture that every dagger-sharp Tits polygon is of index type or a
variation involving an associative ring that is infinite dimensional over its center
and/or a module of infinite rank. To complete the proof, it remains only to
finish the case n = 4.

Conventions 1.3. Let G be a group. We denote the set of non-trivial elements
of G by G*. As in [7], we set a® = b~1ab and

[a,b] =a ‘b~ ab
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for all a,b € G. With these definitions, we have
(i) [ab,c] = [a,c]® - [b,c] and
(ii) [a,bc] = [a, ] - [a, b]®

for all a,b,c € G.

2. Tits polygons

Tits polygons were introduced in [3]. In this section, we give the definition
and assemble all the properties of Tits polygons we will need for the proofs of
Theorems 1.1 and 3.1.

Definition 2.1. A dewolla is a triple
X = (FwAa {EU}UEV)»
where:
(i) T is a bipartite graph with vertex set V and |[',| > 3 for each v € V|,
where I',, denotes the set of vertices adjacent to v.
(ii) For each v € V, =, is an anti-reflexive symmetric relation on I',. We say
that vertices u,w € V are opposite at v if u,w € T', and u =, w. A path
(wg, w1, ..., wy) in T is called straight if w;—; and w;11 are opposite at
w; for all i € [1,m —1].
(iii) There exist n > 3 and a non-empty set A of circuits of length 2n such
that every path contained in a circuit in A is straight.
The parameter n is called the level of X. The automorphism group Aut(X) is
the subgroup of Aut(T") consisting of all ¢ € Aut(T") such that v9 € A for all
v € A and for all u,v,w € V such that v and w are opposite at v, u9 and w9
are opposite at v9. A root of X is a straight path of length n.

Definition 2.2. A Tits n-gon is a dewolla

X =T, A A{=}vev)
of level n for some n > 3 such that I' is connected and the following axioms
hold:

(i) For all v € V and all u,w € T, there exists z € I', that is opposite both
u and w at v.
(ii) For each straight path 6 = (wp,...,wg) of length k¥ < n — 1, ¢ is the
unique straight path of length at most k& from wqg to wy.
(iii) For G = Aut(X) and for each root @ = (wy, ..., wy) of X, the group U,
acts transitively on the set of vertices opposite w,_1 at w,, where U, is
the pointwise stabilizer of

Ty, UTy, U Ul

in G. The group U, is called the root group associated with the root a.

A Tits polygon is a Tits n-gon for some n > 3. A Tits n-gon is called a Tits
triangle if n = 3, a Tits quadrangle if n = 4, etc.
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If X = (T, A, {=,}vev) is a Tits n-gon for some n > 3, then by [3, 1.3.12],
A is the set of all circuits in I' of length at most 2n containing only straight
paths. Thus, in particular, 2n is, roughly speaking, the “straight girth” of I'.

Notation 2.3. We will say that a Tits n-gon X = (I', A, {=, }vev) is Moufang
if all the relations =, are trivial, i.e., if all paths in ' are straight. If X is
Moufang, then by [3, 1.2.3], T' is a Moufang n-gon and A is the set of its
apartments. Conversely, if I' is a Moufang n-gon, A is the set of its apartments
and =, is the trivial relation on I';, for every v in the vertex set V', then by
[3, 1.2.2], (T, A, {=4, }vev) is a Tits n-gon.

Notation 2.4. Let X = (', A, {=,}vev) be a Tits n-gon for some n > 3. A
coordinate system for X is a pair (v,i — w;) where «y is an element of A and
i — wj; is a surjection from Z to the vertex set of v such that w;_; is adjacent
to w; for each i. For each coordinate system (7,7 — w;), we denote by U; the
root group associated with the root (w;, wit1, ..., w;1y) for each i € Z and call
the map ¢ — U; the associated root group labeling. Thus w; = w; and U; = U;
whenever ¢ and j have the same image in Zs,. For the rest of this section, we
fix a Tits n-gon X = (I, A, {=, }vev) and a coordinate system (7,7 — w;) of
X. Let ¢ — U; be the corresponding root group labeling and let G = Aut(X).

Proposition 2.5. G acts transitively on the edge set of T'.
Proof. This holds by [3, 1.3.6]. O
Proposition 2.6. Let
UUgs1 - U if k <m and
U[k,m] = .
1 otherwise.

Then the following hold:
(i) [Ui,Uj] C Ulig,j—1) for all i,j such that i < j < i+n. In particular,
[Ui, Ui+1] =1 for all i.
(ii) The product map Uy x Uz X -+ x Uy — Uy p is bijective.
Proof. This holds by [3, 1.3.36(ii) and (iii)]. O

Notation 2.7. For each path (zo, ..., %), we denote by GSll)zm_l the point-

wise stabilizer of I'y, U--- U, .. Thus, in particular, U; = G&Lh_u,wwn_l
for all 7 and for each vertex v, Gg,l) is the kernel of the action of the stabilizer
G, onT,.

Proposition 2.8. GS}H,MHQP,_MHFI = Uligk—n,j for all i and all k such that
3<k<n.

Proof. This holds by [3, 1.3.27]. O

Proposition 2.9. Let o = (vo,...,v,) be a root. Then U, acts sharply tran-
sitively on the set of vertices that are opposite vy,_1 at Uy,.
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Proof. This holds by [3, 1.3.25]. O
Notation 2.10. Let
Ul ={ael| Wiy 41 1S Opposite witn41 at wiyn}
for each i. By [3, 1.4.3], we have Uiﬁ # () and by [3, 1.4.8], we have
U! = {a € U; | w?_, is opposite w; 1 at w;}
for each i.

Proposition 2.11. For each i € Z, there exist unique maps k and Ay from
Uﬁ to Uzu_m such that for each a € Uf, the product

(2.12) p1r(0) = iy (@) - a - A (a)

interchanges the vertices wiyn—1 and Wiyn4+1. For each a € Uf, the element
uv(a) fizes the vertices w; and win and interchanges the vertices w;y; and
w;—; for all j € Z and

(213) UMW(G) U21+n k
forall k € Z.
Proof. This holds by [3, 1.4.4] and [3, 1.4.9(i)]. O

Proposition 2.14. Let a € Uf for some i. Then the following hold:
(i) a7t € Uiu, pry(a™t) = py(a)t, ky(a™) = A(a)™t and N (a™t) =
k(@)
(i) m = py(ry(a)) = py(Ay(a)).
(ili) py(a?) = py(a)? for all g mappmg ~ to itself.
Ky(Ay(a

(iv) £y ( )) Ay(r4(a)) =

Proof. This holds by [3, 1.4.3, 1.4.9(ii) and 1.4.13] and the third display in the
proof of [3, 1.4.9]. O

Proposition 2.15. Suppose that U} = Uiﬂ for i = 1 and n. Then X is
Moufang.

Proof. By [3, 1.4.15], the relation =, is trivial for v = wy,4+1 and v = wa,, = wo.
By [3, 1.3.20], it follows that the relation =, is also trivial. By Proposition
2.5, every vertex is in the same G-orbit as wg or w;. Thus the relation =, is
trivial for all vertices v. By Notation 2.3, therefore, X is Moufang. (]

Proposition 2.16. Cy((U;,U;11)) = Cu((U;,Uiyn)) = 1 for all i, where H
denotes the pointwise stabilizer of v in G = Aut(X).

Proof. This holds by [3, 1.4.19(ii)]. O

U.U UitnUi .
Proposition 2.17. w; ;""" =T, = w; /""" for each i.

Proof. This holds by [3, 1.3.4]. O
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Proposition 2.18. Suppose that [a1,a,'] = ay - a,_1 with a; € U; for each
i € [1,n]. Then the following hold:
(i) Ifa; € Uf, then ay = aﬁ”(al) and [az, \(a1) " = a3 apn_1an.

(i) If a, € U, then a; = aﬁ”_(f”) and [k (an),a;t )] = ajag - an_o.

Proof. This holds by [3, 1.4.16]. O

Proposition 2.19. The following hold:

(i) If a € Uy and U = Uy for some b € Uy yy, then a € Ul and b= Ay (a)
(ii) Ifa € U, and U = U,,_1 for some b € Uy, then a € U} and b = \,(a).

Proof. This holds by [3, 1.4.27]. O

Remark 2.20. Both Propositions 2.18 and 2.19 remain valid if all the subscripts
are shifted by a fixed amount. We have formulated both results for fixed values
of the indices only for the sake of clarity.

Definition 2.21. Let k£ > 3. As in [3, 1.4.21], we call X k-plump if for all
v € V, and for every subset N of I, of cardinality at most k, there exists a
vertex that is opposite u at v for all w € N. Thus k-plump implies (k — 1)-
plump, and “2-plump” is simply Definition 2.2(i).

Proposition 2.22. If X is 3-plump, then for all i, U; is generated by Uf.
Proof. This holds by [3, 1.4.23]. O

Notation 2.23. Let G' denote the subgroup of G generated by all the root
groups of X, let H be as in Proposition 2.16 and let HT = H N G*.

Proposition 2.24. Let H; = (mm/ | m,m’ € ,uA,(Uf» for all i and let HY
be as in Notation 2.23. Then Hy and H, normalize each other and if X is
(n +1)-plump, then H' = H H,,.

Proof. The first claim holds by Proposition 2.14(iii) and the second claim by
[3, 1.5.28]. O

Notation 2.25. Let H and H' be as in Notation 2.23. The subgroup H
normalizes U; for each i. We say that X is sharp if for each i, every nontriv-
ial HU;-invariant subgroup of U; contains elements of Uiﬁ , where Uiti is as in
Notation 2.10. We say that X is dagger-sharp if for each i, every nontrivial
H'Ug-invariant subgroup of U; contains elements of Uiﬁ . Note that dagger-
sharp implies sharp. Note, too, that by [3, 1.3.13 and 1.3.40], the definitions of
sharp and dagger-sharp do not depend on the choice of the coordinate system
(7,4 — w;) in Notation 2.4.

Remark 2.26. Let H and H' be as in Notation 2.23. By [7, 1.3.13], every
root group of X is conjugate in G to Uy or U,. To show that X is sharp
(respectively, dagger-sharp), it thus suffices to show that every nontrivial HU;-
invariant (respectively, HU;-invariant) subgroup of U; contains elements of Uf
for « =1 and n.
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Proposition 2.27. Suppose that X is sharp and U; is abelian for some i.
Then Ny, (U;) = 1.

Proof. Let Y = Ny, (U;) and let H be as in Proposition 2.16. Suppose that
Y # 1. The subgroup Y is normalized by H. By (2.13) with k = i, Uy, is
conjugate to U; in G. Hence U4, is abelian. Since X is sharp, it follows that
there exists d € Y N Uiﬁ_m. Let m = p,(d). By (2.12), d = emf for some
e, f € U;. Thus
1 1
U, = Uif = (UH =U™ =U" = Uyys.

K2

The group U; fixes w;41, however, but the subgroup U; ;g does not. With this
contradiction, we conclude that Y = 1. O

Proposition 2.28. Suppose that X is sharp and that 8 = (vo,v1,...,0,) 18 @
root such that vo = w;, v, = Wity and Ug = U; for some i. Suppose, too that
U; is abelian. Then 8 = (w;, Wit1, ..., Witn).

Proof. For each z € T, let opp(z) denote the set of vertices in I'y,, that
are opposite z at w;. By Definition 2.2(iii), U; acts transitively on opp(w;y1)
and Ug acts transitively on opp(vi). By Definition 2.2(i), we can choose z €
opp(w;+1)Nopp(vy ). Since U; = Ug, it follows that both opp(w;+1) and opp(v1)
are equal to the U;-orbit containing z. Hence opp(w;+1) = opp(v1). In particu-
lar, w;—1 € opp(v1). By Definition 2.2(iii), therefore, U;4,, contains an element
d mapping vy to w; 1. The subgroup U4, fixes w; = vy and w;y,, = v,. Thus
by Definition 2.2(ii), d maps 8 to (w;, wiy1, ..., Witn). Hence d normalizes U;.
By Proposition 2.27, d = 1 and thus 8 = (w;, W41, ..., Witn)- O

Notation 2.29. Suppose that ¢ < j < i+n and that [a;, a;] = a;410542 - a;—1
with ay, € Uy, for all k € [4,j]. It follows from Proposition 2.6(ii) that for each
ke i+1,j—1], ag is uniquely determined by [a;, a;]. We denote this element
ag by [ai, a;]k-

Definition 2.30. Suppose that n = 4. We say that X is indifferent if
[U1,Us] = [Ua, Uy] = 1.

By [3, 1.3.13 and 1.3.40], this definition does not depend on the choice of the
coordinate system (7,7 — w;) in Notation 2.4.

Proposition 2.31. Suppose that n = 4 and that X is indifferent. Then U; is
abelian for all i.

Proof. We first assume that ¢ = 2. Let as € U;. Choose a1 € Uf and let

—1
a4 = ag”(al) . By Proposition 2.18(i), [al,azl] = asas for some az € Us.

Since [U;,Us] = 1 for i = 1, 3 and 4, it follows that [ag,Uz] = 1. Thus U; is
abelian. By Remark 2.20, in fact, U; is abelian for all i. (|
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Proposition 2.32. Suppose that n = 4 and that X is indifferent. Let by € Uy
and by € Uy. Then the maps a; — [a1,bs] and ay — [b1, aq] are homomor-
phisms.

Proof. This holds by Conventions 1.3(i) and (ii). O

Notation 2.33. Suppose that n = 8. For each vertex z and each integer k > 2,

.....

all straight k-paths (vg,v1,...,v) with z = vg. We set
Vi = Z(Uji—a,i44)) N G

Wi+4

for all 4, where U};_4 ;4 4] is as in Notation 2.6. Thus, in particular, V; C U; for
all 4.

Proposition 2.34. Suppose that n = 8 and X is sharp as defined in Notation
2.25 and let V; be as Notation 2.33. Then V; # 1 for all even i or for all odd i.

Proof. Let G be as in Notation 2.23. By [3, 1.3.7 and 1.3.13], w; lies in the
same G-orbit as w; if i — j is even and every vertex of I' is in the same G-orbit
as wo or wy. The claim holds, therefore, by [3, 1.3.36(i) and 1.6.18]. O

3. Quadrangles

The main result in this section is the following:

Theorem 3.1. Let X be a Tits quadrangle that is indifferent and 5-plump as
defined in Definitions 2.21 and 2.30. Let (v,i — w;) and i — U; be as in
Notation 2.4, let Uiti for all i be as in Proposition 2.11 and let H and H' be as
in Notation 2.23. Suppose that J is a subgroup of H such that [J, HT| =1 and

that for each i, every JH'-invariant subgroup of U; contains elements of Uf.
Then X is Moufang.

It follows by Notation 2.25 and Proposition 2.31 that Theorem 1.2 is the
special case of Theorem 3.1 where J = 1. Before we begin the proof of Theorem
3.1, we prove a preliminary result which (like Theorem 3.1 itself) we will need
in the proof of Theorem 1.1:

Proposition 3.2. Let X be a 3-plump indifferent Tits quadrangle, let (v, —
w;), 1 +— U; and Uf for all i be as in Theorem 3.1. Suppose that the normalizer
Nu, (Uita,i+3)) is trivial for all i. Then a® =1, py(b)* =1 and Ay (b) = k(b)
for alli, all a € U; and all b € U?.

Proof. Suppose X satisfies the hypotheses of Proposition 3.2. We proceed with
the proof of Proposition 3.2 in a series of steps.

Proposition 3.3. For each i, the map a; — p(a;) from Uf to G is injective,
where 1y is as in (2.12).



DAGGER-SHARP TITS OCTAGONS 181

Proof. Tt suffices to assume that ¢ = 1. Let ay,b; € Uf and suppose that
t~(a1) = py(by). Choose a4 € Us. Applying the notation in Notation 2.29, we
have

a1, a3 )2 = af Y = afp ™) = [by, a7,
by Proposition 2.18(i). By Proposition 2.32, therefore, [a1b7 ", a4]y = 1. Since
ay is arbitrary, it follows by Proposition 2.6(i) that a by ' € Ny, (Upz,4). By
hypothesis, therefore, a; = by. O

H’Y(ai)

Proposition 3.4. k,(a;) = a = A\ (a;) for all i and all a; € U, where

Ky and Ay are as in (2.12).

Proof. Let a; € Uf for some ¢ and let m = p(a;). Then k,(a;) € Ujin,
A(ai) € Uipn and by (2.13), also a]” € U;y,. By Proposition 2.14(ii) and
(iii), we have py(a™) = m™ = m = py(ky(a;)) = py(Ay(a;)). The claim holds,
therefore, by Proposition 3.3. O

Proposition 3.5. The elements of Uiti are all of order 2 for all i.

Proof. It suffices to assume that ¢ = 2. Choose a; € Uf and as € Ug and

—1
let a4 = agw(al) . Then a4 € Uf and [al,aéfl] = aqas for some a3 € Us

by Proposition 2.18(i). Hence [a1,a4] = a; 'az' by Proposition 2.32. Let
ag = aﬁf”(a“). By Proposition 3.4, py(as) = agasao and ap = k,(as). By
Proposition 2.18(ii), therefore, [ag,a5'] = ajaz. Hence [ag,a3] = aj'ay ' by
Proposition 2.32. By Conventions 1.3 and Proposition 2.6(i), we have

apasao ao

af asao __ (

=a; ap - [a17a4])

= (ara5 'azh)™ = ajay* - [ag, a3] - a3' = ay a3’

By (2.13), we have a‘f”(a“) € Us. Hence by Proposition 2.6(ii), a3 = 1. Thus
the elements of U§ are all of order 2. By Proposition 2.14(i), therefore, the
elements of ,uA,(U%i ) are all of order 2. O

Corollary 3.6. The elements of ,uV(Uiu) are all of order 2 for all .

Proof. This holds by Proposition 2.14(i) and Proposition 3.5. O
Corollary 3.7. U; is of exponent 2 for all i.

Proof. This holds by Propositions 2.22, 2.31 and 3.5. O

With Proposition 3.4, Proposition 3.6 and Corollary 3.7, the proof of Proposi-
tion 3.2 is complete. O

We use the rest of this section to prove Theorem 3.1. Suppose that X
satisfies the hypotheses of Theorem 3.1. Again we proceed in a series of steps.

Proposition 3.8. Ny, (Ujiy2,i+3) = 1 for all i and the assertions in Proposi-
tion 3.4 and Corollary 3.7 hold.
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Proof. Tt suffices to assume that i = 1. Let by € Uj. If ¢; € U}, then
[c1,b; ]2 # 1 by Proposition 2.18(i) and hence ¢1 & Ny, (Ujz 4). Since X is
sharp and the group Ny, (Ups 4)) is HU;-invariant, it follows that Ny, (Uys 4) =
1. By Proposition 3.2, therefore, the assertions in Proposition 3.4 and Corollary
3.7 hold. O

Proposition 3.9. H' is an abelian group.

Proof. Let H; for all ¢ be as in Proposition 2.24. Then H; centralizes Us and
H, centralizes Uy. Thus [Hy, Hy] C Cy((Usz,Us)) and hence [Hy, Hy] = 1
by Proposition 2.16. Now choose m & uw(Uﬁ) and h,h’ € H;. We have
H* = Hj by (2.13) and m acts trivially on Us. Thus [h, h'] induces the same
permutation as [h™, k'] on Us. Since [h™,h'] € [Hs, H] = 1, we conclude
that [h,h'] € Cyx(Usz). Since h,h' € Cgx(Us), if follows by Proposition 2.16
that [h,h'] = 1. Thus H; is abelian. Choosing m € LLFY(Uf) and h,h' € Hy,

we conclude that [h,h'] = 1 by a similar argument. Thus also Hy is abelian.
Since [Hy, Hy] = 1, therefore, the product HyH, is an abelian group. Hence
by Proposition 2.24, HT is abelian. O

Proposition 3.10. Let H; for all i be as in Proposition 2.24, let h € H; and
m = p(a;) for some i and some a; € Uiu. Then h™ = h~ 1.

Proof. Tt suffices to assume that i = 1. We have

Hy = (mpy(by) | by € UF).
By Corollary 3.6, h™ = h™! for h = myu.,(b1) for all by € Uf. The claim holds,
therefore, by Proposition 3.9. O
Proposition 3.11. Let e; € Uf and m; = p(e;) for i =1 and 4 and let
N = {my,my4). Let

e1poi = egm4m1)Z and eayai = eglm4m1)7,
for alli. Then N is a dihedral group of order 8 and for alli, e; = e;15, e; € Uiﬁ,
el = e if U = U; for somen € N, piy(€;) = piy(ei4a) € N and the normalizer
of U; in N centralizes U;.

Proof. By (2.13), we have e; € Uf for all i. By Proposition 2.14(iii), it follows
from mq,mq € N that p(e;) € N for all i. We have m; € (U, Us). Applying
(2.13) and Proposition 2.14(iii) again, we thus have m7™ € (Us,U;). Hence

[my,m}™*] = 1. By Corollary 3.6, therefore, (mym)? = (mymy4)? and N is
a dihedral group of order 8. It follows that for all ¢, e; = e;45 and e} = ¢;
if U = U; for some n € N. Thus, in particular, e = e;14 and hence

py(€i) = piy (€)™ = py(ef") = py(eiqa) for all i by Proposition 2.14(iii). The
normalizer of U; in N is (u~(ej+2)) for all 4. Since [U;, piy(ei42)] = 1 for all i,
the last claim holds. g
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Notation 3.12. Let H; for all i be as in Proposition 2.24. For each i, let L;
denote the image of H; 1 in Aut(U;) and let K; denote the subring of End( i)
generated by L;. The elements of L; are units of K;. By Proposition 3.9, the
ring K; is commutative and by Corollary 3.7 (and Corollary 3.8), 2 =0 in Kj.
Let m € uV(U-ﬁH) for some i. Since H; = H; 1 and m centralizes U;, L; is

?

also the image of H;_1 in Aut(U;).

Proposition 3.13. Let N be as in Proposition 3.11 and suppose that U* = U;
for some n € N and some i,j. Then conjugation by n induces isomorphisms
from L; to L; and from K; to K; that depend on i and j but not on n.

Proof. This holds by the last assertion in Proposition 3.11. (|

Notation 3.14. By Proposition 3.13, we can use N to identify L; with L; and
K; with K; whenever i—j is even. We denote by ¢; the natural homomorphism
from H; to L;_; for each i. By Proposition 3.13, L;_y = L1 and if U; = U}*
for some n € N, then

(3.15) ©;(h"™) = pi(h)

for all h € H;.

Notation 3.16. Let e; be as in Proposition 3.11 for all . For all 7 and all
a; € Uy, let p; 4, denote the element of Aut(U,41) given by

[azv af_lrl)}z+1

Pi,a; (@it1) =
for all a;41 € Ujy1. If a; € Uiu for some ¢, then by Proposition 2.18(i),

Pi.a; (a,i+1) ai‘; (ei)py(ai)

for all a;11 and hence

(3.17) Pisa; = ©i(py(€i)py(ai)) € Lita.
By Proposition 2.32, we have

(3.18) Pira;i (@it1)pi, (@ig1) = Pisasb, (@iy1)

for all a;,b; € U; and all a;41 € U;1. By Proposition 2.22, therefore, p; q, €
K1 for all a; € U;. We denote by 1); (for arbitrary ¢) the map from U; to the
additive group of Ky given by ;(a;) = piq, for all a; € U;. The elements
of wi(Uf) are invertible in K; and v;(e;) = 1 by (3.17), and by (3.18), 1; is a
homomorphism.

Proposition 3.19. Let H; be as in Proposition 2.24 and let v; and v¥; be as
in Notations 3.14 and 3.16 for some i. Then the following hold:

(i) @i is an isomorphism from H; to L;iq.

(ii) wz is an injective homomorphism from U; to the additive group of K;41.
(iii) i(al) = i(h)?i(a;) for all a; € U; and all h € H;.

(iv) Kt is genemted by the image of ;.
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Proof. An element in the kernel of ¢; is contained in Cy((U;y1,Uit2)). By
Proposition 2.16, therefore, (i) holds. The kernel of v; is Ny, (Ujit2,i+3)). By
Proposition 3.8, this normalizer is trivial. Thus (ii) holds. Let a; € Uf and
h € H;. Then

bi(a]) = @i (i@l (e2)) by (3.17)
)

) by Proposition 2.14(iii)
i (R (@) py (e5)) by Proposition 3.10

Hence by Proposition 2.22, (iii) holds. By (3.17), L;11 is contained in the
subring of K;;1 generated by ;(U;). Since K;41 is generated by L;iq, (iv)
holds. (I

Notation 3.20. Let ¢ =1 or —1 and let m;4. € }L»Y(Ulﬂti_,'_E) for some ¢. We set

as(h) = [mite, h] for all h € H;. We also set af = af if e =1 and o] = of if
e=—1L

Proposition 3.21. Then for all i, the following hold:

(i) of is a homomorphism from H; to Hiy. for e =1 and —1.
(ii) of is independent of the choice of miye in Notation 3.20 for e =1 and
—1.

(iii) o (o (h)) = h? for all h € H;y1.

Proof. Choose 7 and let j =i+ ¢ fore =1or —1. If h € H; and a; € U}i,
then (1 (a;), ] = py(aj)py(alt) € H; by Proposition 2.14(iii). By Conventions
1.3(ii) and Proposition 3.9, it follows that of is a homomorphism. Thus (i)
holds.

Choose h € I,LIZ and let m,m’ € ;LV(UZ%_E). Then [mm’, h] = 1 by Proposition
3.9 and [m, h]™ = [m,h]~! by (i) and Proposition 3.10. By Conventions 1.3(i),
therefore, [m, h] = [m’, h]. Thus (ii) holds.

Let h € Hiy1, m € M’Y(Uiﬁ—&-l) and m’ € uV(Uiﬁ). Then m™ is contained in
(U;_1,U;13) and hence commutes with H;,1. By Proposition 3.10, A™ = h~1.
Thus

[m, [m/, )] =m -h = m/hm’ -m-m'h~ m’h
=mh™'m/ - hm™ b~ -m'h
=mh~'m/-m™ -m'h =mh™'m-h = h>.
Thus (iii) holds. d

Proposition 3.22. For each i and each a; € Uiu, let & be the map from K; to
K41 given by

(3.23) &i(s) = vila;) ™" - Yi(sa;)
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for all s € K;. Then the following hold:

(i) & is an injective homomorphism of rings from K; to K;11 mapping the
identity 1 of K; to the identity 1 of K;11 that does not depend on the
choice of a;.

(i) &i11(&(s)) = s* for all s € K.

(iii) The map s — s is an injective endomorphism of K;.

Proof. Choose i and a; € Uf. By Proposition 3.19(ii), 1; is injective. Hence &;
is injective. Let j =i+ ¢ for e =1 or —1, let h € H; and let s = ¢;(h). Then
Yi(aq) ™t i (sa;) = ila;) " - ial)

= i1y (@) (€1) - i (1 (e iy (al))

= ¢i (1 (ai)py(a}))

= @i([ﬂ"/(ai)a ]) = i (aj (h))
Thus by Proposition 3.21(ii), the restriction of ¢; to ¢;(H;) is independent of
the choice of a; and, by Proposition 3.21(i), this restriction is multiplicative.
Since K; is generated by L; additively, p;(H;) = L; and &; is additive, it follows
that &; is a homomorphism of rings that is independent of the choice of a;. Thus
(1) holds.

By (3.24), we have §09;11 = g0, and {opi1 = ¢; oo | (composing

from right to left). Replacing 1 by ¢ + 1 in the second equation, we obtain
€iv100; = ir10a). Thus

(3.24)

§ir10& 0Pt = &1 090 = piy100; 0a,,.
By Proposition 3.21(iii), therefore,

€z+1 (fl( )) - S

for all s in the subset ¢;+1(H;+1) = L; of K;. This subset generates K;
additively and, as was observed in Notation 3.12, 2 = 0 in K;. Thus (ii)
holds. Since §; and &;41 are both injective homomorphisms, it follows that (iii)
holds. (]

Corollary 3.25. Let o be an automorphism of K; for some i and suppose that
o(s%) = s% for all s € K;. Then o is the identity.

Proof. This follows from Proposition 3.22(iii). O

Proposition 3.26. Let N be as in Proposition 3.11 and suppose that U = U;
for somen € N. Then v;(al) = ¢;(a;) for all a; € U;.
Proof. Let a; € Uf. Then
i(ai) = 05 (1 (e5) 1y (7)) by (3.17)
= @, (py () (ai)™) by Proposition 2.14(iii)
= 0, (1 (&) 1y (a;))™) by Proposition 3.11
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=¥ (Mw(ai)ﬂv(ei)) by (3.15)
By Proposition 2.22, therefore, the claim holds. O

Proposition 3.27. Let b € Ut iy3e for some i and for e =1 or —1. Then

b
VYiyoc(ag el )) Vi(a;) - Eig2e (Vigse (D))
for all a; € U;, where &; is as in Proposition 3.22.

Proof. Tt suffices to assume that ¢ = 1 and ¢ = 1. Let m4 = p4(es) (as in
Proposition 3.11), let m' = 1,(b) and choose a; € U;. Then 9)4(b) = p4(mam’)
by (3.18) and thus

(
3(Ya(b)al” )
a™) - 53 (¥4(b))
by (3.23). By Proposition 3.26, we have 13(a7™*) = 91 (a1). O

Notation 3.28. Let K = Ky, let F = £3(K3), let K = ¢3(Us) and let F' =
£3(1p2(U3)). By Proposition 3.26, we have K = v;(U;) for all odd i and

F = &1 (Vi(Uh)) = i1 (Vig2 (Uiga))

for all even i. By (3.17), we have t3(e3) = &(a(ez)) = 1, so both K
and F contain 1. By Proposition 3.19(ii) and (iv), K is an additive sub-
group of K that generates K as a ring and (since {3 is a homomorphism
of rings) F is an additive subgroup of F that generates F as a ring. The
group Us is generated by Ug (by Proposition 2.22), ¢1(U;) = 3(Us) and
Vo(Usy) = 94(Uy). By Proposition 3.27, therefore, KF C K. By Propo-
sition 3.22(ii), K2 = ¢1(U1)? = &(&(11(U1))) and by Proposition 3.27,
£ (¥1(U1)) C ho(Usz). Therefore K2F C &3(12(Uz)) = F. We conclude that
(K, K, F) satisfies all the properties of an indifferent set as defined in [7, 10.1]
except that we do not know that K is a field.

Notation 3.29. Let K and F be as in Notation 3.28. By Proposition 3.19(ii)
and Proposition 3.22(i), v; is an isomorphism from U; to the additive group of
K for i odd and &;_;01; is an isomorphism from U; to the additive group of F for
i even. We set 2;(s) = ;' (s) forall s € K if i is odd and z;(t) = (&_10%;) ' (t)
for all t € F if i is even. Note that by (3.17), z;(1) = e; for all i.

Proposition 3.30. [x1(s), z4(t)] = zo(s%t)x3(st) for all s € K and allt € F.
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Proof. Let a; = x(s) for some s € K and ay = 24(t) for some t € F. By
Proposition 2.22 and Proposition 2.32, it suffices to assume that a; € Uiﬁ for
i =1and 4. Let n; = py(a;) for i = 1 and 4. Then

ar,ad] =}

by Proposition 2.18,

Y3(ay*) = P1(a1)€3(va(as)) = st
by Proposition 3.27 and

& (Ya(alt)) = & (Valar)) - &(&(W1(ar))) = st
by Proposition 3.22(ii) and Proposition 3.27. d

Proposition 3.31. FC KF C K and K2 c K*F C F C F.

Proof. By Notation 3.28,!213' CK,Fis generated byf‘ asaringand 1 € K. Tt
follows that F' C KF' C K. Similarly, we know that K 2F C F, K is generated
by K as a ring and 1 € F and hence K? ¢ K?F C F. (I

Proposition 3.32. Let K* denote the group of invertible elements of K and
suppose thatr € KX == KNK* andu € F* := FNK*. Thenr~! € K and
ute F.

Proof. By Propomtlon 331 r2 C Fand FK? C F. Hence r~' =r.r2 ¢
KFcKandu'=u-u2c FK2CF. ]

Notation 3.33. Let xo(t) = z4(t)™* and z5(t) = x1(¢)™!, where my and my
are as in Proposition 3.11 and thus mq = p,(z1(1)) and my = p(x4(1)) by
Notation 3.29. By Proposition 2.18 and Proposition 3.30, we have x4(t)™ =
zo(t) and z3(s)™ = z,(s) for all s € K and all t € F. Conjugating the relation
in Proposition 3.30 by m4 and by mi, we thus obtain

(3.34) [20(t), 23(5)] = 21 (st)xa(s2t)
and
(3.35) [22(t), x5(5)] = 23(st)x4(st)

forallse K and all t € F.

Proposition 3.36. Let s € K and t € Z:j Then x1(s) € Uf if and only if
s € K* and x4(t) € U/ if and only if t € F*.

Proof. Suppose that z1(s) € U for some s € K and z4(t) € U for some
teF. Then A (z1(s)) = as5(r) for some r € K and k. (24(t)) = xo(u) for
some u € F. By Proposition 2.18(i) applied to [z1(s),z4(1)] = (82)1'3( ),
we obtain [z2(s%),z5(r)]s = z4(1). By (3.35), it follows that (s ) = 1. By
Proposition 3.22(iii), therefore, sr = 1 and hence s € K*. By Proposition
2.18(ii) applied to [z1(1),z4(t)] = z2(t)x3(t), we have [zo(u), z5(¢)]1 = 21 (1).
By (3.34), it follows that tu = 1. Hence t € F*.
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Suppose, conversely, that s € K* and t € F*. By Proposition 3.30, (3.34)
and (3.35) and bit of calculation, we obtain

Uf1(5)$5(871) — U, and Ugo(t’l)z4(t) —U,.
Hence z1(s) € Uf and x4(t) € Uﬁ by Proposition 2.19. O

Proposition 3.37. x1(s)Pr @ Wiy (@1 (M) = g1 (125) for all r € K* and all
se K.

Proof. Let a, = i (1(1))p(21(r)) for all r € K*. By Proposition 2.18 and
Proposition 3.30, we have x4(t)*(@1() = 2, (r2t) and hence x4(t)* = 24(r~2t)
for all € K* and all t € F. We have [uv(Uf),Ug] = 1. Conjugating the
identity [z1(s),z4(1)]3 = z3(s) by a, and then applying Proposition 3.30, we
conclude that z(s)* = x;(r?s) for all r € K* and all s € K. O

Proposition 3.38. Let o be an automorphism of K, let S denote the subgroup
{s+—r%s|r € K*} of the automorphism group of the additive group of K and
suppose that [0, S] = 1. Then o is the identity.

Proof. Since [0, 5] = 1, we have o(r?) = 72 for all r € K*. By Proposition 2.22
and Proposition 3.36, K is generated additively by K> and as was observed in
Proposition 3.28, K is generated as a ring by K. Therefore K is generated as
a ring by K*. Hence o(s%) = s% for all s € K. The claim holds, therefore, by

Corollary 3.25. O

Proposition 3.39. Let h € H, where H is as in Notation 2.23. Then there
exist p € K* and o € Aut(K) such that x1(s)" = x1(ps®) for all s € K.

Proof. There exist p € K and n € F such that
(3.40) (D" =xz1(p) and z4(1)" = 24(n).

By Proposition 3.36, z;(1) € Uf for i = 1 and 4 and thus p € K* and n € F*.
By Notation 3.28 and Proposition 3.32, nK = K and~p2F = F. We can thus
set 21(s) = z1(ps) and 23(s) = x3(pns) for all s € p~1K and #2(t) = xo(pnt)

and #4(t) = w4(nt) for all t € n~1F. By Proposition 3.30, we have
(3.41) [21(s), 24(t)] = B2(s7t)@3(st)
forall s € p~ 'K and all t € n~'F.

Next we let 3; be the map from K to p~'K such that z;(s)" = 2;(Bi(s))
for i = 1 and 3 and all s € K and let 3; be the map from F to nlF
such that z;(s)" = #;(B;(t)) for i = 2 and 4 and all ¢ € F. The maps

B; are all additive. By (3.40), we have £1(1) = 1 and S4(1) = 1. Conju-
gating the identity [z1(s),x4(1)]3 = x3(s) by h, we thus obtain #3(83(s)) =
[Z1(B1(s)), 24(1)]3 for all s € K and hence 8, = B3 by (3.41). Conjugating
the identity [x1(1),z4(t)]2 = x2(t)z5(t) by h, we obtain [Z1(1),£4(B4(t))] =

Z2(B2(t))z3(Ps(t)) for all t € F. By (3.41), it follows that Sz = B4 and
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that 8, is the restriction of 83 to F. Let 8 = fi. Conjugating the iden-
tity [21(s), 24(t)]2 = 22(st) by h, we obtain [£1(8(s)), 24(B(t))]2 = #2(B(s%t))
and hence

B(s)?B(t) = B(s7t)

for all s € K and all t € F by one more application of (3;41).~Setting t=1,it
follows that 3(s)? = f(s?) for all s € K and since K2 C F' C K by Proposition
3.31, we thus obtain

(3.42) B(s*)B(u?) = B(s*u?)

for all s € K and all u € K. Since K generates K, it follows that (3.42) holds
for all s,u € K. In other words, § restricts to an automorphism of K2. By
Proposition 3.22(iii), every element of K2 has a unique square root in K. This
implies that the map § has a unique extension to an automorphism o if K.
Hence z(s)" = 1(s7) = x1(ps?) for all s € K. O

Proposition 3.43. Suppose that [H,h] = 1 for some h € H. Then there
exists p € K* such that x1(s)" = x1(ps) for all s € K.

Proof. By Proposition 3.37, the subgroup of Aut(U;) induced by H' contains
the group

{z1(s) = z1(r%s) | r € K*}.

The claim holds, therefore, by Proposition 3.38 and Proposition 3.39. O

Proposition 3.44. K and F are fields and X is Moufang.

Proof. Suppose s € K is a non-zero element that does not lie in K* and let I
denote the principal ideal of K generated by s. Then z;(I N K) is a non-trivial
subgroup of U;. By Proposition 3.36, either z1(I N K’) N Uf =fQorl =K.
By hypothesis, the subgroup J in Theorem 3.1 centralizes H'. By Proposition
3.43, therefore, the subgroup x1(I N K’) is J-invariant. Again by hypothesis,
this implies that z; (I N f() N Ulu # (). Hence I = K. We conclude that every
non-zero clement of K lies in K* and thus U = Uf. By Proposition 3.31,
K? ¢ K and K2 C F C K. Tt follows from the first containment that K
is a field and hence the second containment implies that also F' is a field. By
Proposition 3.36 again, it follows that U} = U}f. By Proposition 2.15, therefore,
X is Moufang. t

This concludes the proof of Theorem 3.1. Note that Notation 3.28 and
Proposition 3.44, we now know that (K, K, F ) is an indifferent set as defined
in [7, 10.1]. Thus by [7, 7.5] and Proposition 3.30, I' is isomorphic to the
Moufang polygon described in [7, 16.4] with (K, K, F) in place of (K, Ky, Fp).
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4. Octagons

Our goal in this section is to prove Theorem 1.1. Suppose that X satisfies
the hypotheses of Theorem 1.1, let (v, — w;) and i — U; be as in Notation
2.4, let Uiti for all ¢ be as in Proposition 2.11 and let H be as in Notation 2.23.

Let V; for all 7 be as in Notation 2.33. We have V; C U; and [V;,U;] = 1
whenever |i — j| < 4. By Proposition 2.34, we can assume that the map i — w;
has been chosen so that V; # 1 for all even 4. Since X is sharp, it follows that

(4.1) VinU! #0
for all even i. By (2.13), we have
(4.2) ‘/}“’Y(ai) = Vaits—j

for all ¢, and all a; € Uf.

Remark 4.3. Let a; € Vijj for some even i and let (vo,...,vs,v5) be a straight
5-path with vg = w; 4. By Definition 2.2(iii) and Proposition 2.17, Uj;_4,i14)
acts transitively on the set of straight 5-paths that start at w;;4. Since wj,
is opposite w; g9 at w;g, it follows that vg’ is opposite vs at vs.

Notation 4.4. Let u be a vertex at even distance from w4. By Proposition
2.5, we can choose an element g € G such that u = w]. Let M, = (Voﬁ)g. By
Remark 4.3, the set VOji is normalized by the stabilizer G,,,. Hence the set M,
is independent of the choice of g. In particular, M,,, = V£1_4 for all even 1.

Proposition 4.5. Let v be a vertex at odd distance from wq and let u,z € T,
be distinct. Then M, N M, = 0, where M,, and M, are as in Notation 4.4.

Proof. By Definition 2.2(i), we can choose a vertex y in T, that is opposite both
uw and z. Let a = (vg, ..., vs) be a root with v; = y and vs = v. By Definition
2.2(iii), there exists g € U, mapping u to z. Suppose that a € M, N M, and
let v) = v{. By Remark 4.3 and Notation 4.4, v} and vy are opposite at vs.
By Proposition 2.9, a is the unique element of M, mapping vy to vj. Since g
acts trivially on T',, the element a9 € (M,)9 = M, maps vy to vj. It follows

— \ ¢h) — —
that [a,g] = 1. Thus g € le,vz,vs,v4,vs,vg,vg,vg’ where v§ = v§ and v) = v§.
Let 8 = (vo, v1, U2, V3, Vg, V5, V), 5, v5). Then f is a root (because v} and vy are
opposite at v5) and g is an element of Ug acting trivially on I',; . By Proposition

2.9, it follows that g = 1. This contradicts the assumption that u # z. O
Proposition 4.6. [al,agl] = ag”’(al) e Vy forall ay € Uf and all ag € V.

Proof. Let a; € Uf7 ag € Vi, ug = ky(a1), v9 = Ay(a1) and m = py(ar). Thus
m = ugaivg. By the choice of a1,

(w10, wy, w/107 w/n)

is a straight 3-path, where
r al_l
P = wi
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for i = 10 and 11. By Notation 2.33,
1

ag € wa,wg,w’m,w’ll'
It follows that

[a, agl} c GW

We,.-- W11 "
By Proposition 2.8, therefore, [al,agl] € Upp)- Let a = [al,agl]k for k =4
and 5. Since [ag, ug] € [Vs, Ug] = 1, we have
40506 = [al,agl] Sag = [u;lmvgl,agl] - ag
(4.7) = [mv‘;l7 agl] cag = vgm_laﬁmvgl
= ag' - [ag", v ']
by Conventions 1.3(i). By (4.2), we have af* € V" = V. Thus by Proposition
2.6(1), [a', vy '] € Ups5). By Proposition 2.6(ii) and (4.7), it follows that as =
ag' € V4. Hence

(4.8) [ai, agl] = ag'as.

The element ag € Vg centralizes Ujg 5. By Proposition 2.6(i), a; normal-
izes Ujgg. It follows that asas = [al,agl] centralizes Upp g. Since ay € V)
centralizes Ups ), we conclude that

(49) [as, U[Q_’g]] =1.

-1 -1
Choose aqg € VlﬁO and let u = wglo and v = w;“’ . Then (wg,w1g,u,v) is a
straight 3-path. Hence there exists b € Ul2,3 such that u® = wq; and v* = wys.

By (4.9), [as,b] = 1. Since a5 € G&)hww, it follows that a5 € G&ll Therefore
(410) [a5’ alO] c G(l)

wg,Wg ..., W12 "
The element ajo centralizes Ujg 1) and by Proposition 2.6(i), as normalizes

Uje,12)- It follows that [as, a1o] centralizes Ujg 12). Choose a1z € UfQ. By (4.10),
therefore,

(4.11) [as, azo] € G

’ ’ ’
WS, WY,y WL, W12, W] g 5een W, WS

where

aiz
4

w; =w
for all ¢ € [8,11]. By the choice of a2, the sequence
(w83w97 cee 7w113w127w/117 s ,wéa wé)
is a straight 8-path. By Proposition 2.9 and (4.11), it follows that
(412) [a57a10] =1.
By the choice of aqg,

" i i 12
(wﬁa w7aw87w97w107w97w87w7aw6)
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is a straight 8-path, where w} = w;*® for all ¢ € [6,9], and by (4.12),
(1)

as € Gws,w7,ws,wg,wlg,wé’,wé’,w;’,wé’ .
By another application of Proposition 2.9, we conclude that a5 = 1. By (4.8),

therefore, the claim holds. (I

Corollary 4.13. [U;, (Vgﬂ C (Vf}, [U1,Vs] C Vi, Uy is abelian and for each
ag € V6u, the map a1 — [a1,a6] from Uy to Vy is a faithful homomorphism.

Proof. By Conventions 1.3(ii) and Proposition 4.6, we have [U, (V)] c (V})
and [Uf,Vg} C Vy. By Conventions 1.3(i) and Proposition 2.22; therefore, we
have [Uy, (VH)] € (Vf) and [Uy,Vs] C Vi. Choose ag € V. By Conventions
1.3(i), the map a1 — [a1, ag] from Uy to V4 is a homomorphism. Choose a1 in
the kernel of this map and let u = wj. Since [a1,as] = 1 and ag € M,,,, we
have ag € My,, N M, and hence v = w9 by Proposition 4.5. By Proposition
2.9, therefore, a; = 1. Thus the map a; — [a1, ag] is injective. Since Vj is
abelian, it follows that U is too. (I

Remark 4.14. Let D be the dihedral group generated by the permutations
i+ 8—iandi+— 10—1 of Z16. By (2.13), Proposition 2.14(iii) and Proposition
4.6, we have
[ai,a,j_l] = a?W(ai) e Vi
for all a; € Uiﬁ and a; € V; whenever (i,7) € (1,6)”. We will use this ob-
servation implicitly whenever we refer to Proposition 4.6. A similar comment
applies to all the identities and assertions that follow. Thus, for example, it
follows from Corollary 4.13 that [U;, V;] C V;_a whenever (i,j) € (1,6)P and
that U; is abelian for all odd 1.
Proposition 4.15. For each ag € Vbﬁ and each as € Ug,
(i) [a2,vs] = agasag and
(11) [Cl5,’l}8] = Gg¢,
where vg = Ay (ag), as = ag”(a‘r’), az = (a3 ') (%) and ag = agw(ao)'
Proof. Choose ag € VOu and a5 € Ug. Let ug = ky(ao), vs = Ay(ap), m =
t~(ag), az = ag”(as‘), az = (agl)m, ag = ay’ and wo = uf’. Then m = ugagvs,
ap € U,g for Kk = 2, 3 and 6 and wqy € Ug by (2.13). By Proposition 2.6(i),
a;nwa € Up5)a6. Since [ag, az] € [Vo, U] = 1, we have a5°”® = ay® € axUps 7
by Proposition 2.6(i). Since mwy ' = ug'm = aguvs, it follows that
agg S CLQU[?)’?] N U[1’5]CL6.
Thus ay® € axUjs 51a6 by Proposition 2.6(ii).
By Proposition 4.6 and Remark 4.14, [as, ay '] = [ao, as] = az, so

a3 = (a5 1)"as)" = (ag )™ a5,
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_ —1
We have (agz')™wo = a3’ € Up gas and ag® € asUg 71 by Proposition 2.6(i).
Thus
ags S U[112}a3 . G5U[617].
By Proposition 2.6(ii) and the conclusion of the previous paragraph, therefore,
as® = agazasag and ag® = asae. O

Corollary 4.16. [U57)\,Y(V0ﬁ)] C <V6ﬁ>

Proof. By Proposition 4.15(ii), [UZ, )W(Voﬁ)] C V{. The claim follows by Con-
ventions 1.3(1) and Proposition 2.22 since [Us, V] = 1. O

Proposition 4.17. [Us, U] = [Us, U;] = 1.

Proof. Choose ag € VOji and let vg = A\, (ap) and m = p(ap). Choose ag € Ug
and a; € U; and let a5 = (a;l)m_l. By Proposition 4.15(i), [az,vs] = asasae

for as = ag”(%) and ag = a3*. By Proposition 4.6, [az, a;l] = a4 and therefore
a3” = aqasg for ag = ag”(a” € V4. Thus [as, v8]%" = [agaq, vs] since [Uz, Us] = 1.
Since [a4,vs] € [V4, Us] = 1, we have [aqaq,vs] = [az, vs] by Conventions 1.3(i).
Thus

(418) [a3a5a6, a7] = [[ag,ngaﬂ =1.

We have [ag, U 7] € [V, U7l = 1 and thus [azasae, ar] = [azas,ar]. By
Proposition 2.6(i) and Corollary 4.13, we have [as, [a3,a7]] € [as,Upg] = 1.
By Conventions 1.3(i), therefore, [agas, a7] = [as, a7] - [as, ar]. Hence [as,a7] =

[as,a7]"! by (4.18). We conclude that [Uf,Uf] = [Uf,Uf]. By Proposition
2.6(i), [Us,Us] C Us and thus [US,Uf] C Us. By Remark 4.14, [Uf, U¥] c Us
implies that [U?Ei, Uﬂ C Uy. By Proposition 2.6(ii), Uy NUg = 1. It follows that
[Usu, U?] = [U?'f7 Ug] = 1. By Proposition 2.22, therefore, the claim holds. O

Proposition 4.19. [Uy,U;] C UsUs.

Proof. Let i be odd. By Proposition 4.17, [U;, U;12] = 1. By Definition 2.2(iii),
it follows that U; C Gq(}) for all u opposite w;11 at w;1o and U;49 C Gq(jl) for
all v opposite w; 7 at w;4+g. Thus

Ut U] c G4)

We,---, W10 "

By 2.8, therefore, [Uf7 Uﬁ] C Up3,5)-
Now choose a; € Uf and let ug = Kry(a1), v9 = Ay(a1) and m = py(aq1),

S0 m = ugaive. Let a; € UL, Then a'™ = a® = ¢ € Ujz,sja7 by the
conclusion of the previous paragraph. Since a¥* € Us by (2.13), we also have

1
a?vg € a7'Ups,7) by Remark 4.14 and the conclusion of the previous paragraph.
Thus

a?l € a?U[5,7] N U[3,5]a7 C a7'Usay
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by Proposition 2.6(ii). Hence [U?,U!] ¢ UsUs. The claim follows now by
Conventions 1.3(i)—(ii), Proposition 2.22 and Proposition 4.17. d

Proposition 4.20. Let
G=H-(U;|i odd),

where H is as in Notation 2.23. Then there exist an indifferent Tits quadrangle
X =M A A=} pev)s

a coordinate system (”y,z ;) ofX with root group labeling i — U; and a
homomorphism ¢ from G to Aut(X) such that o(H) is the pointwise stabilizer
of 4 in QD(G) and the restriction of ¢ to U; is an isomorphism from U; to
U(i+1)/2 for all odd i.

Proof. Let ®g be asin [1, 2.1] and let cv; denote the root (w;, wit1, ..., Wity,) for
each i. We identify ®s with {«; | i € Z} as described in [1, 4.7]. By [1, 5.1], the
map «; — U, is a stable ®g-grading of G with torus H as defined in [1, 2.3]. By
Proposition 2.11, we can assume that the set M,, that appears in [1, 2.3(iii)]
equals ;L,Y(Uf). After identifying {«; | ¢ odd} with ®4, we observe that the
restriction of the map o; — U; to {a; | i odd} is a stable ®4-grading of G with
torus H (and with the same sets M,,). Let X be the Tits quadrangle obtained
by applying [1, 5.2 and 5.3] to this ®4-grading, let (¥, — ;) be the coordinate
system of X described in [1, 5.7] and let i — U; be the corresponding root
group labeling. Let ¢ be the homomorphism from G to Aut(X) corresponding
to the action of G on X by right multiplication. Then by [1, 5.3], p(H) is the
pointwise stabilizer of 4 in (G). By [1, 5.19], the restriction of ¢ to U; is an
isomorphism from U; to U(iJrl)/z for all odd . By Definition 2.30, Remark 4.14
and Proposition 4.17, X is indifferent. ([

Proposition 4.21. @(Uﬁ) = U&H)/Q for all odd 1, ;\ op = po, and
ks 0@ = @ o Ky, where U(,L+1)/2 and ¢ are as in Proposition 4.20 and )\ and
ks are as in Proposition 2.11 applied to X.

Proof. To prove the first claim, it suffices to assume that ¢ = 1. Let a1 =
¢(ay) for some a; € Uy. Suppose first that a; € U?, let é = As(ay) and
let ¢g be the unique element of Uy such that ¢(cg) = é. By Proposition
2.11, we have Ug'“® = U;. By Proposition 2.28, therefore, ajco maps the root
(w1, wg, wis, - . ., W) to the root (wy, we, ws, ..., wy). Since Ug = Gﬁ,}g,ww,...,wls
and Uy = G&}Q,w47_,,,w9, it follows that Ug*® = U,. By Proposition 2.19(1)7
therefore, a; € Uf and cg = Ay(a1). Suppose, conversely, that a; € U let
cg = Ay(a1) and let & = @(09) By Proposition 4.17 and Proposition 2 11
applied to X, we have U‘“C9 = U,. By Proposition 2. 19(i) again, it follows
that a; € U? and & = As(a1). Thus o(Uf) = U(lii+1)/2 and \s 0 = po\,. By
Proposition 2.14(i), it follows that 45 0 ¢ = @ o K. O
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Corollary 4.22. IfX is Moufang, then Uﬁ U} for all odd i.

Proof. 1f X is Moufang, then by Notations 2.3 and 2.10, Uﬁ U* for all . The
claim holds, therefore, by Proposition 4.21. O

Corollary 4.23. X s sharp.

Proof. Let HT be as in Notation 2.23. Since X is dagger-sharp and U is abelian,
every non-trivial H-invariant subgroup of U; for i odd contains elements of
Uf. Every non-trivial ¢(H)-invariant subgroup of Uj is the image under ¢ of
a non-trivial Hf-invariant subgroup of U;. By Proposition 4.21, it follows that
for all j, every non-trivial ¢(HT)-invariant subgroup of U contains elements of

Uﬁ Since U is abelian for all j, it follows that X is sharp. O

Proposition 4.24. Let i be odd and let j = (i + 1)/2. Then there exists a
bijection m; from Ty, to I'y, mapping =, to =g, and wiyo. to Wjye fore =1
and —1 such that m;(u9) = m;(u)?9) for all g € (U;, H,Uj ).

P?”OOf. Let Qz = <Ui,H, U7;+8> and let

Si= () H

9€(Ui,Uits)
By [1, 5.1], we can identify X with the Tits octagon that arises as in [1, 5.2-5.3]
starting with ¢ — U; and H. By [1, 5.2(a)], the group Q; acts transitively on
T, and hence by [1, 5.4(i)], S; is the kernel of this action. Let H = o(H).
The homomorphism ¢ maps Q; to Qj = (Uj, H, Uj+4> and S; to

S'j = ﬂ f{g.
9€(U;,Uj+4)

Suppose that ¢(g) € H for some g € Q;. Let j =i or i +8. Then eU;) =
UfY = o(Uf). By [, (2.4) and 5.1], we have Q; = U;U;4sU;H. Thus
g = abch with a,c € U;, b € Uj;3 and h € H. Thus

p(Uf) = o(U7)#e®.

Since ¢(c) and ¢(h) normalize (U;), it follows that cp(UJl?) = ¢(U;). By
Proposition 2.27 and Corollary 4.23, it follows that b = 1. Hence g = ach. Thus
g normalizes both U; and U;;g. The group @); stabilizes both w; and w;g. By
Proposition 2.28, it follows that g € H. We conclude that (,D_I(H) H. Hence
¢ 1(S;) = S;. Therefore ¢ induces an isomorphism from @Q;/S; to Q; /S

It follows that ¢ induces a bijection from the set of right cosets of B; := U;H
in Q; to the set of right cosets of Bj = Ujﬂ in Qj. By [1, 5.4(i)], therefore,
there exists a bijection m; from I'y,, to fu;j mapping w;42 to W;41 such that
mi(u9) = m;(u)?™ for all u € Q;. Choose a € Uiﬂ and let & = p(a). By
Proposition 4.21, a € Uiﬁ and ¢ maps m := p,(a) to m := ps(a). Thus m;
maps w;_2 = Wi}, to w1 = 12)}11 and ¢ maps the double coset B;mB; to the
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double coset Bijj. Thus by [1, 5.2(c)], vertices u,v € Ty, are opposite at
w; if and only if m;(u) and m;(v) are opposite at w;. In other words, 7; maps
=y, to =4, O

Corollary 4.25. X s 5-plump.

Proof. By hypothesis, X is 9-plump. By Proposition 4.24, therefore, X is also
9-plump “at w;” for all j, so by Proposition 2.5, X is 9-plump. Thus, in
particular, X is 5-plump. O

Proposition 4.26. The normalizer N01(0304) is trivial.

Proof. By Proposition 2.18(i), we have Nﬁf(ﬁgfh) = (). By Proposition 4.21,
therefore, Ny (UsU;) = 0. Since X is dagger-sharp, it follows that Ny, (UsUrz)
= 1. Hence NUI(UgU4) =1. O

Proposition 4.27. The following hold:
(i) exp(U;) = exp(Vig1) = 2 for all odd i.
(i) 1y (a0)? = py(a1)? =1 for all ag € VI and a, € U?.
(iii) K (ao) = Ay(ap)™! and ky(a1) = Ay (ar) for all ag € V¢ and ay € UL,

Proof. By Propositions 3.2, 4.21 and 4.26, we have exp(U;) = 2 and k(a;) =
Ay (a;) for all odd i and all a; € U?. Choose a; € U? and a4 € Vi. By
Proposition 4.6, there exists ag € V; such that [a1,as] = a4. Then a3 =
[a3,ag] = 1 since [a1, a4] € [Ur, V4] = 1. Thus exp(V4) = 2 and hence exp(V;) =
2 for all even i. Thus (i) holds. By Proposition 2.14(i), it follows that (ii) and
the first claim in (iii) hold. O

Proposition 4.28. [Uy, ky(ao)] = [Us, A\y(ao)] =1 for all ag € Voﬁ.

Proof. Choose ag € V(f and let ug = K (ao), vs = Ay(ao), m = p(ap) and

—1

(4.29) wy = vg"

Then vgm™! - ugap = 1 and hence m = wougag. Let ay € U,. By (2.13),
-1, —1 -1

al' € Uy, 50 [ag,a]] € [Vo,Us] = 1. Thus af° = a; ™ " = a;" =

af - [af',ug'] € a'Upn by Proposition 2.6(1). On the other hand, a}® =
[wo,a;'] - as € Uj1,3)a4 by Proposition 2.6(i). Thus by Proposition 2.6(ii), a4
commutes with m, ug and wg. By (4.29), ay commutes with vs as well. O

Proposition 4.30. [as,asls = agw(%) € Vi and [as, ag]y = 1 for each as € V3
and ag € Ug.

Proof. Choose ay € V5 and ag € Ug. Let uwp = k(as), vo = Ay(ag) and
m = py(ag), so m = upagvg. Then af’ = ay°*®™ = a3®™ = as - (a2, as]" since
[Uo, az] C [Uy, V2] = 1. By Proposition 2.6(i), a - [a2,as]" € Uy gjar, where

a7 = [ag,ag)7. By (2.13), af* € Vs. By Proposition 2.6(ii), therefore, a7 = 1.



DAGGER-SHARP TITS OCTAGONS 197

Thus as-[az, ag]* € Up 506, where ag = [a2, agls. By Proposition 2.6(ii) again,
we conclude that ag = a3’. O

Corollary 4.31. [az,ag] € Uz - (V) for all as € (V}) and all ag € UL,
Proof. This holds by Proposition 2.6(i) and Proposition 4.30. O
Corollary 4.32. [(V}), (VH)] € (VAU (V).

Proof. By Proposition 2.6(i) and Proposition 4.30, [Vzﬁ,‘/gﬁ] C U[3’5]V6ﬁ. By
Remark 4.14, therefore, [VQﬁ, Vgﬁ] C VfU[SJ]. Hence

V3, VE] € ViU 7 N U g Ve = ViUV
by Proposition 2.6(ii). The claim follows now by Conventions 1.3(i)-(ii). O

Proposition 4.33. Let ag € VOﬁ and az € Ug. Then [a3,vs] = aqas and

gw(a0)7 agw(as)uw(ao) and

[ag,vg_l] = asasag, where vg = Ay(ag), as = a ag =
a
ag = ag”( ).

Proof. Let us = k~(ag), vs = Ay(ap), m = py(ao), as = a§* and wy = ug".
Then m = ugapvs. By (2.13), a5 € Ug and wy € Up. By Proposition 2.6(i),

therefore, ay *° € Up,gas and, since [ag,a3] € [Vo,Us] = 1, a3*”® = a3® €

azUly,7- Since m = agvswo, it follows that

—1
o)

agg S (13U[477] N U[174](15.

Therefore a3® € agUyas by Proposition 2.6(ii). Thus [as,vs] = asas for some
a4 € Uy. By Proposition 4.27(iii), ug = vg_l. By Conventions 1.3(ii), therefore,
1 = [a3, vgus] = [a3, ug] - (asas)"®.

By Proposition 4.28, [a4,us] = 1. By Proposition 4.15(ii), [as, vs] = ag, where
ag = ag”(as)m € ng. Since [ag, Us] C [Vs,Us] = 1, it follows by Conventions

1.3(ii) that [as,vg '] = ag'. Hence

[as, us] = [as5,v5 '] = ag
by Proposition 4.27(i). We conclude that [as, us] = (asasag) . By Proposition
4.27(1), (agasag) ™! = a;lag)aﬁ since [ay, ag] € [Us, V5] = 1. Tt remains to show
only that ay = ah”'"’, since then a4 € Vj by (2.13) and thus ay = a;' by
Proposition 4.27(i).

Since [ag, azay '] € [Vo, Ups,a] = 1, we have
az®* = (a3 - [ag, ug))* = (a3a21a5a6)a° = agazlagoago.

By Proposition 4.6, a2 € Vias. By Corollary 4.32, [V{, V] C VaUsVy and
hence
lag, as) € VQUBGSLW(GG)
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by Proposition 4.30. Thus by Proposition 4.17,

uga —1 _ao ,a -1 a —1_H~(ac)
a3®" = azay “agag’® € Vaasay asag® C VoUsay "ay” " asag
since [V3,Uj35] = 1. On the other hand, a3®* = a3"** = ag® = asas since
— a, o, .o
ug = vg '. Thus ay = af)”( °) by Proposition 2.6(ii). O

By Proposition 4.27(i), exp(U;) = exp(Vi+1) = 2 for all odd i. From now
on, we will use this fact without explicitly referring to Proposition 4.27(i).

Proposition 4.34. Ny, (Upyg) = 1.
Proof. Let ay € V{ and a5 € U?. By (2.13), we have )\W(a’;”(as)) € Us and by
Proposition 4.15(i),

a2 Ay (a5 )]s # 1.
Thus ay does not normalize U}y g). Since X is sharp, the claim follows. O

Proposition 4.35. Suppose that [as,as]s = 1 for some as € <V2ﬁ> and some
ag € Vgu. Then ap = 1.

Proof. By Corollary 4.32, we have [as, ag] € V4Vg. Thus [[as, as], Us] = 1. Since
[as, Ug] € [V, Us] = 1, it follows that [[ag, Ug|,ag] = 1 by [7, 2.3]. Hence

lag, Us] C Ups N Calag) = U,y
by Proposition 2.6(i) and Proposition 4.13. Thus as normalizes U s. By
Proposition 4.34, it follows that as = 1. O

Proposition 4.36. For each ag € <V6ﬁ> and ag € Vgﬁ, there exists as € Uz such
that [as,as] = ag.

Proof. Choose ag € (V{) and ag € Vi and let uy = ky(ag), vo = Ay (as)
and m = p,(ag). Let ag = af*. Then ay € (V) by (2.13) and m = m™~*
by Proposition 4.27(ii). By Proposition 4.30 and Corollary 4.32, therefore,
[az,as]) € VyUsag. Let a5 = [az,as]s, ag = af* and by = [val,ag]. By (2.13),
a3 € Uz and thus

(437) [ag, ag] e Vs
by Corollary 4.13. By Corollary 4.16, we have [\, (V¥),Us] C (V#). Thus
[vo, as] € (VF). Since [Uy, Va] = 1, it follows that by = [vg, as] ™' € (V{). Hence
ago_ = [vy ', a3] - az = boas
by Proposition 4.27(i). Thus by Corollary 4.32, we have
—1 -1

ag " =ag® = (byaz)™

(4.38) = by - [ba, ag] - as - [a3, as]

€ Upa,q) - [b2,as]s - [b2, agle - [as, ag]
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since [as, [b2,asls] € [Us,[Va, Vsle] C [Us,Vs] = 1. We have mvglag = ug.
Since az® € U} 4)a5, we conclude that
[b2, as]s = a5 and [bs, agle = [a3, ag]

by Proposition 2.6(ii), (4.37) and (4.38). Since [b, [az,as]] € [Va, Ul q] = 1,
the first of these equations implies that [agbe,ag]s = a2 = 1, so az = by by
Proposition 4.35. Thus [a3, as] = [b2, agls = [az, asls = as. O
Proposition 4.39. Let a3 € Uy, ag € VGﬁ and ag € VSji and suppose that
[as, as] = ag. Then az € Ug.

Proof. Let u = w{3 and let b = ag®. Then ag € M,,,, and b € M,,, where M,,,,
and M, are as in Notation 4.4. Since agz fixes wyg and w1, u is opposite wig
at wyy. Since [a3,as] = ag, we agag = b € M,,. By Proposition 4.5, u is the
unique vertex in I'y,,, such that agag is contained in M,,. By Proposition 4.36,
it follows that for all ag € V6ﬁ and ag € Véu, there exists a unique vertex u in
I'y,, such that agag € M, and u is opposite wip at wi1. By symmetry, the
vertex u is also opposite wyo at wiy. Thus a; € Uf by Notation 2.10. [l

Proposition 4.40. [Us, Us] C (V).

Proof. Choose ag € Voﬁ, by € U; and a5 € Ug and let v = A,(ap) and
as = agw(%). By (2.13), ag € Vzﬁ, 0 [ag,b2] = 1 and by Conventions 1.3(ii),
Proposition 2.6(i) and Corollary 4.13,
[az, [b2, vs]] € (a2, Ups 7] = laz, Ur] € (V)
since [az, Ujzg)] C [Va, U] = 1. Tt follows that [bs, [a2, vs]] € (VH) by [7, 2.3]
applied to the quotient group U[g,g}/(Vf). By Proposition 4.15(i),
[ag, vs] € UzasVs = UsVsas,

50 [ba, as] = [bs, [as,vs]] € (V{) since [Us, UsVe] = 1. Thus [Us, U] € (V).
The claim holds, therefore, by Proposition 2.22. O

Proposition 4.41. Let vg = agws for some ag € Vg and some wg € )\W(Ug)
and suppose that vg € Ug. Then ag € <V8u>.

Proof. Let ag = r~(vg), so ap € Ug and by Proposition 2.14(iv), vg = A, (ao).
Let ug = k~(ag), m = p(ag) and wo = ug'. Choose a3 € Ug. Then m = ugagvg
—1

and by (2.13), af* € U! and wy € U, Hence af™ € Up,5) by Proposition

2.6(i). Let ay = [ag,a3']. By Proposition 4.40, ay € (VJ). We have ao"s =

(azasz)"® € Ujg,7) by Proposition 2.6(i). Since m = aguvswyo, it follows that
(a2a3)™ € Upz,7 N U g)-

Therefore

(442) (agag)vg S U[2,5]
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by Proposition 2.6(ii). By Corollary 4.31, [az,vs] € Ujz 5 - (Vg). Thus
as - as, vs] - az € Up 5 (V).
Since
(aza3)”® = ag - [ag, vs] - as - [as, vg],
it follows by Proposition 2.6(ii) and (4.42) that [a3,vs] € Ups) - (Vg) Since
[V8,Ups,g] = 1, we have vg = wgag and [[a3, ws],as] = 1. Thus
las, vs] = [as, wsas| = [as, as] - [as, ws]*® = [as, as] - [as, ws]
by Conventions 1.3(ii). We have [a3, ws] € U5 by Proposition 4.33. Since
Ve, Upa,5)] = 1, it follows that [az,as] € Uy - <V6ﬁ> By Proposition 4.6,
therefore, ag € (V{). O

Proposition 4.43. Let ag € Ug. If [ag, as] € Upi g for some as € Us, then
[ao, as] € <V2u>

Proof. Suppose that [ag,a5] = a1az with ag € Ug and a; € U; for : =1, 2 and
5. Let ug = K4(ag), vs = Ay(ag) and m = p(ap). Then af* € Us by (2.13), so

1
(4.44) az* = a5 €Upg

by Proposition 2.6(1). By Proposition 4.40, a5® = asae for some ag € (Véi), S0

ag®" = (asag)® = [ao, as] - as - [ag, as] - as = arazas - [ag, ag| - ag.

By Corollary 4.31, [ag, ag] € <‘/2ﬁ>U[375]. Thus ag®* € a1a2<1/'2ﬁ>U[3’6}. Hence
agsao S U[377] N a1a2<V2ﬁ>U[3,6]
by (4.44). By Proposition 2.6(ii), therefore, a; = 1 and ay € (V). O

Proposition 4.45. Let ay € Uy and suppose that [a1,a4] = 1 for some ay € Uf,
Then [a4,vg] € Usal®, where vg = Ay(a1) and m = p(aq).

Proof. Let ag = aj'. Then ag € Us by (2.13), m = u4(vg) by Proposition
2.14(ii), a1 = k~(vg) by Proposition 2.14(iv) and k(vg) = Ay (v9) by Propo-
sition 4.27(iii). Thus m = ajvga;. We have ay'* € Upgsae and ag'™ =
ay’ € a4Ups g by Proposition 2.6(i). Since ma; = ayvy, it follows that a;° €
asUjs,8) N Upsja6. By Proposition 2.6(ii), therefore, ay® € a4Usag. Thus
[a4,v9] € Usag = U5a£”. O

Proposition 4.46. Letay € Uf and suppose that [ay, ay] = 1 for some ay € Uf.
Then aq € Vy.

Proof. Let vg = A, (a1) and m = p(ay). By Proposition 4.45, [a4, vg] € Usa}*.
We have aj* € Us. By Proposition 2.6(ii) and Proposition 4.43, therefore,
ay’ € Vg. Hence a4 € V. O
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Proposition 4.47. Suppose that [ag,a5] = aras and a; € U; fori =0, 1, 2
and 5. Then a1 = 1.

Proof. The subgroup Vj is normal in Uy 5). By Conventions 1.3(i), Proposition
2.6(i), Proposition 4.17 and Proposition 4.40, we have

[[Uo, U], Us] C [Up,3), Us] C Va.

Since [Uy, Us] = 1, it follows by [7, 2.3] applied to the quotient group Uy 5/Va
that [[Uo, Us|, Us] C Vy. Thus [ajas, Us] C Vy. Choose by € Uy. By Conventions
1.3(i), we have [ajaz, bs] = [a1, b4]*2[az, bs]. By Proposition 4.40, [a1, bs]*2 € V3
and by Proposition 2.6(i), [az,bs] € Us. By Proposition 2.6(ii), therefore,
[a1,bs] = 1. Since by is arbitrary, it follows that a; € Cy, (Uy). By Proposition
4.15(ii), on the other hand, Uﬁ ¢ Vi, so by Proposition 4.46, CUf(U4) = 0.
Since X is sharp, it follows that Cy, (Us) = 1. Thus a; = 1. O

Proposition 4.48. Let ag € Up. If [ag,as] € Up g for some as € Us, then
lao, as] € (V{).

Proof. Suppose that [ag,as5] = a1ae with a; € U; for ¢ = 0, 1, 2 and 5. By
Proposition 4.47, we have a; = 1. Choose b7 € U&. By Proposition 2.6(i), ag
normalizes U[; g) and hence ag7 = fag for some f € U}y g). Again by Proposition
2.6(i), Uz normalizes Uz and hence f = eby for some by € Uz and some
e € UiUpg. By Corollary 4.13, Us is abelian. By Proposition 2.6(i) and
Proposition 4.17, therefore, [e,as] = 1 and thus

(4.49) ay" = [ag, as)’" = [al7, a¥7] = [ebyao, as] = [baao, as]

by Conventions 1.3(i). By Conventions 1.3(i) and Proposition 4.40, we have
[baag, as] = dy-[ag, as] = dgas = asdy for some dy in (Vf} By (4.49), therefore,
we have [az,br] = dy. Let do = @{"". By (2.13), dy € (V§) and by 4.6,
[d2,b7] = d4. Thus [azdz, b7] = 1 by Conventions 1.3(i) and Proposition 4.27(3).
Therefore

agbg c U2 N U57 - G(l)

W3, W4, W5, W6 ,WT, W, W, WY
/ b . / / AN :
where w] = w,” for all i. The path (ws, ws, wa, ws, we, Wr, W§, W5, wy) is straight
and of length 8. Thus «a := (wa, w3, w4, W5, We, W7, W, W5, WY ) is a root and

Uo =G

W3, W4, W5, W6 ,WT, W, WE
By Proposition 2.9, therefore, asds = 1. Hence as € <V2u>. O
Proposition 4.50. Let ay € Uy. If [a1,a4] = 1 for some a; € Uf, then
ay € Vy.

Proof. Let vg = Ay (a1) and m = p(a1). By Proposition 4.45, [a4, vg] € Usa}*.
We have a}* € Us. By Proposition 2.6(ii) and Proposition 4.48, it follows that
ay* € Vs. Hence a4 € V. O



202 B. MUHLHERR AND R. M. WEISS

Proposition 4.51. Lete; € Uf and ag € V6u. Then
V6ﬁ _ {algw(el)#w(al) lay € Uf}

Proof. Let a4 = ag”(el) and choose bg € Vﬁﬁ. By Proposition 4.36, there ex-
ists a1 € U such that [a1,bs] = a4. By Proposition 4.39, a; € Uf. Thus
a’g”(el)“”(al) = bg by Proposition 4.6. O

Let W; = /\’Y(‘/iu—fﬂ) for all even 1.

Proposition 4.52. W, C Uf for all even 1.
Proof. This holds by Proposition 2.11. ([

Proposition 4.53. Us = Vg - (Wg).

Proof. Choose a5 € Ug and ag € Ug. By Proposition 4.40, [as,as] € (Vg).
By Proposition 4.15(ii), [a5, W3] contains elements of Vﬁﬁ. The product p.(er)
uv(al) for e1,aq1 € Uf normalizes Wg and by Proposition 4.17, it centralizes
Us. By Proposition 4.51, therefore, Vi C [as, Ws]. Therefore (V) C [as, (Ws)].
Thus there exists b € (Wg) such that [as,as] = [as,b]. Hence [as,aghb™1] = 1.
By 4.50, we conclude that agh™! € Vk. O

Proposition 4.54. [Us,Ug] = 1.
Proof. This holds by Proposition 4.28 and Proposition 4.53. O

Proposition 4.55. [HiH;, Hs] = 1, where H; for all i is as in Proposition
2.24.

Proof. By Proposition 4.17, H; centralizes Us and H7 centralizes Us. By Propo-
sition 4.54, Hg centralizes Uy. Thus [Hy, Hg] C Cy((Us, Us)) and [H7, Hg] C
Cu((Us,Uy)). Thus [Hy, Hg] = [Hy, Hg] = 1 by Proposition 2.16. O

Proposition 4.56. Let X be as in Proposition 4.20. Then X is Moufang and
U! = U? for all odd i.

Proof. Let H' be as in Proposition 2.23. We have H;H; C H' and by Propo-
sition 2.24, H' = H,Hg. By Proposition 2.24 and Proposition 4.21, we have

w(Uf) = U('ji+1)/2 for all odd i and H' = @(H, H7), where ¢ is as in Proposition
4.20 and H' is as in Proposition 2.23 applied to X. Since X is dagger-sharp,
every non-trivial Hf-invariant subgroup of U; for i odd contains elements of U, Zﬁ .
Hence every non-trivial ¢(H)-invariant subgroup of U; for arbitrary ¢ contains
elements of [?f. By Proposition 4.25 and Proposition 4.55, therefore, we can
apply Theorem 3.1 with J = ¢(Hs). Thus X is Moufang. The second claim
holds, therefore, by Proposition 4.22. O

Proposition 4.57. Let e; € Uf and ag € VGﬁ. Then
<V6ti>* _ {agw(al)uw(el) laj € U{i}
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Proof. Choose bg € (VE)* and let by = b2 By (2.13), by € (Vf)* and by
4.36, there exists a; € Uy such that [a1, ag] = by. By Proposition 4.56, a; € Uf.
Thus bg“’(el)“”(al) = ag by Proposition 4.6. O
Corollary 4.58. <Vzﬁ)* = V;ﬁ for all even .

Proof. This holds by Proposition 4.57. ([
Proposition 4.59. Ug = Vg U VgWyg.

Proof. Choose as € Ug and ag € Ug. By Proposition 4.40, [as,ag] € (Vg)
By Proposition 4.15(ii), [as, W] contains elements of V. The product - (a;)
uv(el) for e1,a1 € Uf normalizes Wg and by Proposition 4.17, it centralizes
Us. By Proposition 4.57 and Corollary 4.58, therefore, (Vg)* C [as, Ws]. Thus

there exists b € Wg U {1} such that [as, as] = [as,b]. Hence [a5,agb™!] = 1. By
Proposition 4.50, we conclude that agb™! € Vj. O
Proposition 4.60. (Wg) C <V8ﬁ> U (Vg) - Ws.

Proof. Choose az € Ug and bg € (Ws). By Proposition 4.59, there exists
ag € Vg and wg € W U {1} such that bg = agwg. We have

(4.61) [ag, Wg] C U[4’5]

and [a3, Wg''] C Upa 5 V6ﬁ by Proposition 4.33. By Conventions 1.3(ii), Propo-
sition 4.40 and 4.54, it follows that

a5, bs]s € [a3, (Ws)lo © (VE)-
By Conventions 1.3(ii), Proposition 4.6 and (4.61), on the other hand, we have

las, bs] = [a3, agwg]| = [a3, ws] - (a3, ag]"™® € U[4,5]a§W(a3)-

Hence ag € <V8ﬁ> O
Corollary 4.62. Us := (V}f) U <V;3ﬁ) - Wg is a subgroup of Us.

Proof. Since Vg C Z(Usg), the product (V8u> -(Wg) is a subgroup. This subgroup
contains Us. By Proposition 4.60, on the other hand, (V{) - (Wg) C Us. O
Proposition 4.63. Vs N Ug = <V8u>, where Us is as in Proposition 4.62.

Proof. Let a3 € U§7 ag € (YQ) and wg € Wg. By Conventions 1.3(ii) and
Proposition 4.13,

las, agws] = [a3, ws] - (a3, as]"® € [az, ws] V.

By Proposition 4.33, therefore, [a3,agws]s # 1. Hence agwg ¢ Vg by another
application of Corollary 4.13. O

Proposition 4.64. V5 = (Vg‘}.
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Proof. Let Us be as in Corollary 4.62. By Proposition 4.41 and Proposition
4.59, U§ C Ug. By Proposition 2.22 and Corollary 4.62, it follows that Us = Us.
Hence Vg = Vs N Us = (V) by Proposition 4.63. 0

Corollary 4.65. Viji = V>
Proof. This holds by Proposition 4.58 and Proposition 4.64. ([l

We observe now that we can continue to follow the proof of [7, 17.7] given
in [7, 31.1-31.34] verbatim, starting with [7, 31.22]. The arguments from this
point on require only Proposition 4.52, Proposition 4.56, and Corollary 4.65;
the equality U’ = U} for i even is never required. The results [7, 31.22-31.34]
yield the conclusion that there exist an octagonal set (K, o), isomorphisms x;
from the additive group of K to U; for all odd ¢, isomorphisms x; from the
additive group of K to the center of U; for all even i and and injections y; from
the set K to U; for all even 4 such that U; = y;(K)x;(K) and

(4.66) Yi(s)yi(t) = yi(s +t)xi(s7t)

for all s,¢ € K and for all even ¢ and all the commutator relations in [7, 16.9]
hold.

It is now a lengthy but straightforward calculation to show using (4.66) and
the commutator relations in [7, 16.9] that

U;Co((u-i-vg)/Ra)yo(u/R)ws(t)ys(u) -,

for all s,t € K not both zero, where
R=v""2 4 uv+u’

(cf. [7, 10.14 and 32.13]). By Proposition 2.19(ii), therefore, U§ = Ug. By
Proposition 4.56, it follows that U} = Uf for all i. Hence by Proposition 2.15,
X is Moufang. This concludes the proof of Theorem 1.1.

References

[1] B. Miihlherr and R. M. Weiss, Root graded groups of rank 2, J. Comb. Algebra 3 (2019),
no. 2, 189-214. https://doi.org/10.4171/JCA/30

[2] —, Tits triangles, Canad. Math. Bull. 62 (2019), no. 3, 583—601. https://doi.org/
10.4153/50008439518000140

, Tits Polygons, Mem. A.M.S., to appear.

(3]

[4] , The exceptional Tits quadrangles, Transform. Groups, to appear.

[5] J. Tits, Moufang octagons and the Ree groups of type 2Fy, Amer. J. Math. 105 (1983),
no. 2, 539-594. https://doi.org/10.2307/2374268

, Quadrangles de Moufang. I, in Jacques Tits, Collected Works, vol. III, eds.
F. Buekenhaut et al., Europ. Math. Soc. Publ. House, Ziirich, 2013, pp. 472-487.

[7] J. Tits and R. M. Weiss, Moufang Polygons, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2002. https://doi.org/10.1007/978-3-662-04689-0

[6]


https://doi.org/10.4171/JCA/30
https://doi.org/10.4153/S0008439518000140
https://doi.org/10.4153/S0008439518000140
https://doi.org/10.2307/2374268
https://doi.org/10.1007/978-3-662-04689-0

DAGGER-SHARP TITS OCTAGONS

BERNHARD MUHLHERR

MATHEMATISCHES INSTITUT

UNIVERSITAT GIESSEN

35392 GIESSEN, GERMANY

Email address: bernhard.m.muehlherr@math.uni-giessen.de

RicHARD M. WEISS

DEPARTMENT OF MATHEMATICS
TUrTS UNIVERSITY

MEDFORD, MA 02155, USA
Email address: rweiss@tufts.edu

205



