DAGGER-SHARP TITS OCTAGONS

Bernhard Mühlherr and Richard M. Weiss

Abstract

The spherical buildings associated with absolutely simple algebraic groups of relative rank 2 are all Moufang polygons. Tits polygons are a more general class of geometric structures that includes Moufang polygons as a special case. Dagger-sharp Tits n-gons exist only for $n=3$, 4,6 and 8 . Moufang octagons were classified by Tits. We show here that there are no dagger-sharp Tits octagons that are not Moufang. As part of the proof it is shown that the same conclusion holds for a certain class of dagger-sharp Tits quadrangles.

1. Introduction

A generalized polygon is the same thing as an irreducible spherical building of rank 2. Tits observed that the spherical buildings of rank 2 that arise from absolutely simple algebraic groups all satisfy a property he called the Moufang condition. In [5], he classified Moufang octagons. He showed, in particular, that they all arise as the fixed point building of a polarity of a building of type F_{4}. Subsequently, the complete classification of Moufang polygons was given in [7].

The notion of a Tits polygon was introduced in [3]. A Tits polygon is a bipartite graph Γ in which for each vertex v, the set Γ_{v} of vertices adjacent to v is endowed with a symmetric relation we call "opposite at v " satisfying certain axioms. A Moufang polygon is the same thing as a Tits polygon all of whose local opposition relations are trivial.

Let \mathcal{P} denote the set of pairs (Δ, T), where Δ is a spherical building of type M satisfying the Moufang condition and T is a Tits index of absolute type M and relative rank 2 . Every pair (Δ, T) in \mathcal{P} gives rise by a simple construction to a Tits polygon whose automorphism group is canonically isomorphic to the automorphism group of Δ preserving T. We call the Tits polygons that arise in this way the Tits polygons of index type. Moufang polygons are all Tits

[^0]polygons of index type; this is the case that not just the relative rank but also the absolute rank of T is 2 .

For every irreducible spherical building Δ of rank at least 2 , there exist Tits indices T such that $(\Delta, T) \in \mathcal{P}$. Thus the theory of Tits polygons allows us to regard a spherical building of arbitrary rank at least 2 as a rank 2 structure to which the methods developed in [7] can be applied.

With a few exceptions, Tits polygons of index type satisfy a condition we call dagger-sharp. This is a natural condition on the action of the stabilizer of an apartment on the corresponding root groups. It is trivially satisfied by all Moufang polygons. Tits n-gons exist for every value of n (as was observed in [3, 1.2.33]), but by [3, 1.6.14], dagger-sharp Tits n-gons exist only for $n=3,4$, 6 and 8.

Let k be an integer at least 3 . We say that a Tits polygon is k-plump if for each vertex v, the valency $\left|\Gamma_{v}\right|$ of v is not too small in an appropriate sense. All Tits polygons of index type corresponding to a pair (Δ, T) in \mathcal{P} are k-plump if the field of definition of Δ contains at least k elements (by [3, 1.2.7]).

In [2, 5.11 and 5.12], we showed that all dagger-sharp Tits triangles are of index type (or a variation defined over a simple associative ring that is infinite dimensional over its center) and in [1, 7.7], we showed that all dagger-sharp Tits hexagons are of index type. In [4], we proved a similar (but slightly weaker) result for the Tits quadrangles of exceptional type.

The main goal of this article is to treat the case $n=8$. We prove the following:

Theorem 1.1. All 9-plump dagger-sharp Tits octagons are Moufang.
Our proof of Theorem 1.1 is a modification of Tits' classification of Moufang octagons in [5]. It exploits the existence of a Tits subquadrangle of indifferent type. To make the proof work, we first have to prove Theorem 3.1, a classification result for this class of Tits quadrangles. As a corollary, we obtain the following:

Theorem 1.2. All 5 -plump dagger-sharp indifferent Tits quadrangles are Moufang.

Our proof of Theorem 3.1 is, in turn, a modification of Tits' unpublished classification of indifferent Moufang quadrangles which eventually appeared in [6].

We conjecture that every dagger-sharp Tits polygon is of index type or a variation involving an associative ring that is infinite dimensional over its center and/or a module of infinite rank. To complete the proof, it remains only to finish the case $n=4$.

Conventions 1.3. Let G be a group. We denote the set of non-trivial elements of G by G^{*}. As in [7], we set $a^{b}=b^{-1} a b$ and

$$
[a, b]=a^{-1} b^{-1} a b
$$

for all $a, b \in G$. With these definitions, we have
(i) $[a b, c]=[a, c]^{b} \cdot[b, c]$ and
(ii) $[a, b c]=[a, c] \cdot[a, b]^{c}$
for all $a, b, c \in G$.

2. Tits polygons

Tits polygons were introduced in [3]. In this section, we give the definition and assemble all the properties of Tits polygons we will need for the proofs of Theorems 1.1 and 3.1.

Definition 2.1. A dewolla is a triple

$$
X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)
$$

where:
(i) Γ is a bipartite graph with vertex set V and $\left|\Gamma_{v}\right| \geq 3$ for each $v \in V$, where Γ_{v} denotes the set of vertices adjacent to v.
(ii) For each $v \in V, \equiv_{v}$ is an anti-reflexive symmetric relation on Γ_{v}. We say that vertices $u, w \in V$ are opposite at v if $u, w \in \Gamma_{v}$ and $u \equiv_{v} w$. A path $\left(w_{0}, w_{1}, \ldots, w_{m}\right)$ in Γ is called straight if w_{i-1} and w_{i+1} are opposite at w_{i} for all $i \in[1, m-1]$.
(iii) There exist $n \geq 3$ and a non-empty set \mathcal{A} of circuits of length $2 n$ such that every path contained in a circuit in \mathcal{A} is straight.
The parameter n is called the level of X. The automorphism group $\operatorname{Aut}(X)$ is the subgroup of $\operatorname{Aut}(\Gamma)$ consisting of all $g \in \operatorname{Aut}(\Gamma)$ such that $\gamma^{g} \in \mathcal{A}$ for all $\gamma \in \mathcal{A}$ and for all $u, v, w \in V$ such that u and w are opposite at v, u^{g} and w^{g} are opposite at v^{g}. A root of X is a straight path of length n.

Definition 2.2. A Tits n-gon is a dewolla

$$
X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)
$$

of level n for some $n \geq 3$ such that Γ is connected and the following axioms hold:
(i) For all $v \in V$ and all $u, w \in \Gamma_{v}$, there exists $z \in \Gamma_{v}$ that is opposite both u and w at v.
(ii) For each straight path $\delta=\left(w_{0}, \ldots, w_{k}\right)$ of length $k \leq n-1, \delta$ is the unique straight path of length at most k from w_{0} to w_{k}.
(iii) For $G=\operatorname{Aut}(X)$ and for each root $\alpha=\left(w_{0}, \ldots, w_{n}\right)$ of X, the group U_{α} acts transitively on the set of vertices opposite w_{n-1} at w_{n}, where U_{α} is the pointwise stabilizer of

$$
\Gamma_{w_{1}} \cup \Gamma_{w_{2}} \cup \cdots \cup \Gamma_{w_{n-1}}
$$

in G. The group U_{α} is called the root group associated with the root α.
A Tits polygon is a Tits n-gon for some $n \geq 3$. A Tits n-gon is called a Tits triangle if $n=3$, a Tits quadrangle if $n=4$, etc.

If $X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)$ is a Tits n-gon for some $n \geq 3$, then by [3, 1.3.12], \mathcal{A} is the set of all circuits in Γ of length at most $2 n$ containing only straight paths. Thus, in particular, $2 n$ is, roughly speaking, the "straight girth" of Γ.
Notation 2.3. We will say that a Tits n-gon $X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)$ is Moufang if all the relations \equiv_{v} are trivial, i.e., if all paths in Γ are straight. If X is Moufang, then by [3, 1.2.3], Γ is a Moufang n-gon and \mathcal{A} is the set of its apartments. Conversely, if Γ is a Moufang n-gon, \mathcal{A} is the set of its apartments and \equiv_{v} is the trivial relation on Γ_{v} for every v in the vertex set V, then by $[3,1.2 .2],\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)$ is a Tits n-gon.
Notation 2.4. Let $X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)$ be a Tits n-gon for some $n \geq 3$. A coordinate system for X is a pair $\left(\gamma, i \mapsto w_{i}\right)$ where γ is an element of \mathcal{A} and $i \mapsto w_{i}$ is a surjection from \mathbb{Z} to the vertex set of γ such that w_{i-1} is adjacent to w_{i} for each i. For each coordinate system $\left(\gamma, i \mapsto w_{i}\right)$, we denote by U_{i} the root group associated with the root $\left(w_{i}, w_{i+1}, \ldots, w_{i+n}\right)$ for each $i \in \mathbb{Z}$ and call the map $i \mapsto U_{i}$ the associated root group labeling. Thus $w_{i}=w_{j}$ and $U_{i}=U_{j}$ whenever i and j have the same image in $\mathbb{Z}_{2 n}$. For the rest of this section, we fix a Tits n-gon $X=\left(\Gamma, \mathcal{A},\left\{\equiv_{v}\right\}_{v \in V}\right)$ and a coordinate system $\left(\gamma, i \mapsto w_{i}\right)$ of X. Let $i \mapsto U_{i}$ be the corresponding root group labeling and let $G=\operatorname{Aut}(X)$.
Proposition 2.5. G acts transitively on the edge set of Γ.
Proof. This holds by [3, 1.3.6].
Proposition 2.6. Let

$$
U_{[k, m]}= \begin{cases}U_{k} U_{k+1} \cdots U_{m} & \text { if } k \leq m \text { and } \\ 1 & \text { otherwise } .\end{cases}
$$

Then the following hold:
(i) $\left[U_{i}, U_{j}\right] \subset U_{[i+1, j-1]}$ for all i, j such that $i<j<i+n$. In particular, $\left[U_{i}, U_{i+1}\right]=1$ for all i.
(ii) The product map $U_{1} \times U_{2} \times \cdots \times U_{n} \rightarrow U_{[1, n]}$ is bijective.

Proof. This holds by [3, 1.3.36(ii) and (iii)].
Notation 2.7. For each path $\left(x_{0}, \ldots, x_{m}\right)$, we denote by $G_{x_{1}, \ldots, x_{m-1}}^{(1)}$ the pointwise stabilizer of $\Gamma_{x_{1}} \cup \cdots \cup \Gamma_{x_{m-1}}$. Thus, in particular, $U_{i}=G_{w_{i+1}, \ldots, w_{i+n-1}}^{(1)}$ for all i and for each vertex $v, G_{v}^{(1)}$ is the kernel of the action of the stabilizer G_{v} on Γ_{v}.
Proposition 2.8. $G_{w_{i+1}, w_{i+2}, \ldots w_{i+k-1}}^{(1)}=U_{[i+k-n, i]}$ for all i and all k such that $3 \leq k \leq n$.
Proof. This holds by [3, 1.3.27].
Proposition 2.9. Let $\alpha=\left(v_{0}, \ldots, v_{n}\right)$ be a root. Then U_{α} acts sharply transitively on the set of vertices that are opposite v_{n-1} at v_{n}.

Proof. This holds by [3, 1.3.25].
Notation 2.10. Let

$$
U_{i}^{\sharp}=\left\{a \in U_{i} \mid w_{i+n+1}^{a} \text { is opposite } w_{i+n+1} \text { at } w_{i+n}\right\}
$$

for each i. By [3, 1.4.3], we have $U_{i}^{\sharp} \neq \emptyset$ and by [3, 1.4.8], we have

$$
U_{i}^{\sharp}=\left\{a \in U_{i} \mid w_{i-1}^{a} \text { is opposite } w_{i-1} \text { at } w_{i}\right\}
$$

for each i.
Proposition 2.11. For each $i \in \mathbb{Z}$, there exist unique maps κ_{γ} and λ_{γ} from U_{i}^{\sharp} to U_{i+n}^{\sharp} such that for each $a \in U_{i}^{\sharp}$, the product

$$
\begin{equation*}
\mu_{\gamma}(a):=\kappa_{\gamma}(a) \cdot a \cdot \lambda_{\gamma}(a) \tag{2.12}
\end{equation*}
$$

interchanges the vertices w_{i+n-1} and w_{i+n+1}. For each $a \in U_{i}^{\sharp}$, the element $\mu_{\gamma}(a)$ fixes the vertices w_{i} and w_{i+n} and interchanges the vertices w_{i+j} and w_{i-j} for all $j \in \mathbb{Z}$ and

$$
\begin{equation*}
U_{k}^{\mu_{\gamma}(a)}=U_{2 i+n-k} \tag{2.13}
\end{equation*}
$$

for all $k \in \mathbb{Z}$.
Proof. This holds by [3, 1.4.4] and [3, 1.4.9(i)].
Proposition 2.14. Let $a \in U_{i}^{\sharp}$ for some i. Then the following hold:
(i) $a^{-1} \in U_{i}^{\sharp}, \mu_{\gamma}\left(a^{-1}\right)=\mu_{\gamma}(a)^{-1}, \kappa_{\gamma}\left(a^{-1}\right)=\lambda_{\gamma}(a)^{-1}$ and $\lambda_{\gamma}\left(a^{-1}\right)=$ $\kappa_{\gamma}(a)^{-1}$.
(ii) $m=\mu_{\gamma}\left(\kappa_{\gamma}(a)\right)=\mu_{\gamma}\left(\lambda_{\gamma}(a)\right)$.
(iii) $\mu_{\gamma}\left(a^{g}\right)=\mu_{\gamma}(a)^{g}$ for all g mapping γ to itself.
(iv) $\kappa_{\gamma}\left(\lambda_{\gamma}(a)\right)=\lambda_{\gamma}\left(\kappa_{\gamma}(a)\right)=a$.

Proof. This holds by [3, 1.4.3, 1.4.9(ii) and 1.4.13] and the third display in the proof of [3, 1.4.9].

Proposition 2.15. Suppose that $U_{i}^{*}=U_{i}^{\sharp}$ for $i=1$ and n. Then X is Moufang.

Proof. By [3, 1.4.15], the relation \equiv_{v} is trivial for $v=w_{n+1}$ and $v=w_{2 n}=w_{0}$. By [3, 1.3.20], it follows that the relation $\equiv_{w_{1}}$ is also trivial. By Proposition 2.5 , every vertex is in the same G-orbit as w_{0} or w_{1}. Thus the relation \equiv_{v} is trivial for all vertices v. By Notation 2.3, therefore, X is Moufang.

Proposition 2.16. $C_{H}\left(\left\langle U_{i}, U_{i+1}\right\rangle\right)=C_{H}\left(\left\langle U_{i}, U_{i+n}\right\rangle\right)=1$ for all i, where H denotes the pointwise stabilizer of γ in $G=\operatorname{Aut}(X)$.
Proof. This holds by [3, 1.4.19(ii)].
Proposition 2.17. $w_{i-1}^{U_{i} U_{i+n}}=\Gamma_{w_{i}}=w_{i+1}^{U_{i+n} U_{i}}$ for each i.
Proof. This holds by [3, 1.3.4].

Proposition 2.18. Suppose that $\left[a_{1}, a_{n}^{-1}\right]=a_{2} \cdots a_{n-1}$ with $a_{i} \in U_{i}$ for each $i \in[1, n]$. Then the following hold:
(i) If $a_{1} \in U_{1}^{\sharp}$, then $a_{2}=a_{n}^{\mu_{\gamma}\left(a_{1}\right)}$ and $\left[a_{2}, \lambda_{\gamma}\left(a_{1}\right)^{-1}\right]=a_{3} \cdots a_{n-1} a_{n}$.
(ii) If $a_{n} \in U_{n}^{\sharp}$, then $a_{1}=a_{n-1}^{\mu_{\gamma}\left(a_{n}\right)}$ and $\left[\kappa_{\gamma}\left(a_{n}\right), a_{n-1}^{-1}\right]=a_{1} a_{2} \cdots a_{n-2}$.

Proof. This holds by [3, 1.4.16].

Proposition 2.19. The following hold:

(i) If $a \in U_{1}$ and $U_{n}^{a b}=U_{2}$ for some $b \in U_{n+1}$, then $a \in U_{1}^{\sharp}$ and $b=\lambda_{\gamma}(a)$
(ii) If $a \in U_{n}$ and $U_{1}^{a b}=U_{n-1}$ for some $b \in U_{0}$, then $a \in U_{n}^{\sharp}$ and $b=\lambda_{\gamma}(a)$.

Proof. This holds by [3, 1.4.27].
Remark 2.20. Both Propositions 2.18 and 2.19 remain valid if all the subscripts are shifted by a fixed amount. We have formulated both results for fixed values of the indices only for the sake of clarity.
Definition 2.21. Let $k \geq 3$. As in [3, 1.4.21], we call $X k$-plump if for all $v \in V$, and for every subset N of Γ_{v} of cardinality at most k, there exists a vertex that is opposite u at v for all $u \in N$. Thus k-plump implies $(k-1)$ plump, and "2-plump" is simply Definition 2.2(i).
Proposition 2.22. If X is 3 -plump, then for all i, U_{i} is generated by U_{i}^{\sharp}.
Proof. This holds by [3, 1.4.23].
Notation 2.23. Let G^{\dagger} denote the subgroup of G generated by all the root groups of X, let H be as in Proposition 2.16 and let $H^{\dagger}=H \cap G^{\dagger}$.
Proposition 2.24. Let $H_{i}=\left\langle m m^{\prime} \mid m, m^{\prime} \in \mu_{\gamma}\left(U_{i}^{\sharp}\right)\right\rangle$ for all i and let H^{\dagger} be as in Notation 2.23. Then H_{1} and H_{n} normalize each other and if X is $(n+1)$-plump, then $H^{\dagger}=H_{1} H_{n}$.
Proof. The first claim holds by Proposition 2.14(iii) and the second claim by [3, 1.5.28].
Notation 2.25. Let H and H^{\dagger} be as in Notation 2.23. The subgroup H normalizes U_{i} for each i. We say that X is sharp if for each i, every nontrivial $H U_{i}$-invariant subgroup of U_{i} contains elements of U_{i}^{\sharp}, where U_{i}^{\sharp} is as in Notation 2.10. We say that X is dagger-sharp if for each i, every nontrivial $H^{\dagger} U_{i}$-invariant subgroup of U_{i} contains elements of U_{i}^{\sharp}. Note that daggersharp implies sharp. Note, too, that by [$3,1.3 .13$ and 1.3.40], the definitions of sharp and dagger-sharp do not depend on the choice of the coordinate system ($\gamma, i \mapsto w_{i}$) in Notation 2.4.

Remark 2.26. Let H and H^{\dagger} be as in Notation 2.23. By [7, 1.3.13], every root group of X is conjugate in G to U_{1} or U_{n}. To show that X is sharp (respectively, dagger-sharp), it thus suffices to show that every nontrivial $H U_{i^{-}}$ invariant (respectively, $H^{\dagger} U_{i}$-invariant) subgroup of U_{i} contains elements of U_{i}^{\sharp} for $i=1$ and n.

Proposition 2.27. Suppose that X is sharp and U_{i} is abelian for some i. Then $N_{U_{i+n}}\left(U_{i}\right)=1$.

Proof. Let $Y=N_{U_{i+n}}\left(U_{i}\right)$ and let H be as in Proposition 2.16. Suppose that $Y \neq 1$. The subgroup Y is normalized by H. By (2.13) with $k=i, U_{i+n}$ is conjugate to U_{i} in G. Hence U_{i+n} is abelian. Since X is sharp, it follows that there exists $d \in Y \cap U_{i+n}^{\sharp}$. Let $m=\mu_{\gamma}(d)$. By (2.12), $d=e m f$ for some $e, f \in U_{i}$. Thus

$$
U_{i}=U_{i}^{f^{-1}}=\left(U_{i}^{d}\right)^{f^{-1}}=U_{i}^{e m}=U_{i}^{m}=U_{i+8}
$$

The group U_{i} fixes w_{i+1}, however, but the subgroup U_{i+8} does not. With this contradiction, we conclude that $Y=1$.

Proposition 2.28. Suppose that X is sharp and that $\beta=\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is a root such that $v_{0}=w_{i}, v_{n}=w_{i+n}$ and $U_{\beta}=U_{i}$ for some i. Suppose, too that U_{i} is abelian. Then $\beta=\left(w_{i}, w_{i+1}, \ldots, w_{i+n}\right)$.

Proof. For each $z \in \Gamma_{w_{i}}$, let $\operatorname{opp}(z)$ denote the set of vertices in $\Gamma_{w_{i}}$ that are opposite z at w_{i}. By Definition 2.2(iii), U_{i} acts transitively on $\operatorname{opp}\left(w_{i+1}\right)$ and U_{β} acts transitively on $\operatorname{opp}\left(v_{1}\right)$. By Definition 2.2(i), we can choose $z \in$ $\operatorname{opp}\left(w_{i+1}\right) \cap \operatorname{opp}\left(v_{1}\right)$. Since $U_{i}=U_{\beta}$, it follows that both opp $\left(w_{i+1}\right)$ and opp $\left(v_{1}\right)$ are equal to the U_{i}-orbit containing z. Hence $\operatorname{opp}\left(w_{i+1}\right)=\operatorname{opp}\left(v_{1}\right)$. In particular, $w_{i-1} \in \operatorname{opp}\left(v_{1}\right)$. By Definition 2.2(iii), therefore, U_{i+n} contains an element d mapping v_{1} to w_{i+1}. The subgroup U_{i+n} fixes $w_{i}=v_{0}$ and $w_{i+n}=v_{n}$. Thus by Definition 2.2(ii), d maps β to $\left(w_{i}, w_{i+1}, \ldots, w_{i+n}\right)$. Hence d normalizes U_{i}. By Proposition 2.27, $d=1$ and thus $\beta=\left(w_{i}, w_{i+1}, \ldots, w_{i+n}\right)$.

Notation 2.29. Suppose that $i<j<i+n$ and that $\left[a_{i}, a_{j}\right]=a_{i+1} a_{i+2} \cdots a_{j-1}$ with $a_{k} \in U_{k}$ for all $k \in[i, j]$. It follows from Proposition 2.6(ii) that for each $k \in[i+1, j-1], a_{k}$ is uniquely determined by $\left[a_{i}, a_{j}\right]$. We denote this element a_{k} by $\left[a_{i}, a_{j}\right]_{k}$.

Definition 2.30. Suppose that $n=4$. We say that X is indifferent if

$$
\left[U_{1}, U_{3}\right]=\left[U_{2}, U_{4}\right]=1
$$

By [3, 1.3.13 and 1.3.40], this definition does not depend on the choice of the coordinate system $\left(\gamma, i \mapsto w_{i}\right)$ in Notation 2.4.

Proposition 2.31. Suppose that $n=4$ and that X is indifferent. Then U_{i} is abelian for all i.

Proof. We first assume that $i=2$. Let $a_{2} \in U_{2}$. Choose $a_{1} \in U_{1}^{\sharp}$ and let $a_{4}=a_{2}^{\mu_{\gamma}\left(a_{1}\right)^{-1}}$. By Proposition 2.18(i), $\left[a_{1}, a_{4}^{-1}\right]=a_{2} a_{3}$ for some $a_{3} \in U_{3}$. Since $\left[U_{i}, U_{2}\right]=1$ for $i=1,3$ and 4 , it follows that $\left[a_{2}, U_{2}\right]=1$. Thus U_{2} is abelian. By Remark 2.20, in fact, U_{i} is abelian for all i.

Proposition 2.32. Suppose that $n=4$ and that X is indifferent. Let $b_{1} \in U_{1}$ and $b_{4} \in U_{4}$. Then the maps $a_{1} \mapsto\left[a_{1}, b_{4}\right]$ and $a_{4} \mapsto\left[b_{1}, a_{4}\right]$ are homomorphisms.

Proof. This holds by Conventions 1.3(i) and (ii).
Notation 2.33. Suppose that $n=8$. For each vertex z and each integer $k \geq 2$, let $G_{z}^{(k)}$ denote the intersection of $G_{v_{1}, \ldots, v_{k-1}}^{(1)}$ (as defined in Notation 2.7) for all straight k-paths $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ with $z=v_{0}$. We set

$$
V_{i}=Z\left(U_{[i-4, i+4]}\right) \cap G_{w_{i+4}}^{(4)}
$$

for all i, where $U_{[i-4, i+4]}$ is as in Notation 2.6. Thus, in particular, $V_{i} \subset U_{i}$ for all i.

Proposition 2.34. Suppose that $n=8$ and X is sharp as defined in Notation 2.25 and let V_{i} be as Notation 2.33. Then $V_{i} \neq 1$ for all even i or for all odd i.

Proof. Let G be as in Notation 2.23. By [3, 1.3.7 and 1.3.13], w_{i} lies in the same G-orbit as w_{j} if $i-j$ is even and every vertex of Γ is in the same G-orbit as w_{0} or w_{1}. The claim holds, therefore, by [3, 1.3.36(i) and 1.6.18].

3. Quadrangles

The main result in this section is the following:
Theorem 3.1. Let X be a Tits quadrangle that is indifferent and 5-plump as defined in Definitions 2.21 and 2.30. Let $\left(\gamma, i \mapsto w_{i}\right)$ and $i \mapsto U_{i}$ be as in Notation 2.4, let U_{i}^{\sharp} for all i be as in Proposition 2.11 and let H and H^{\dagger} be as in Notation 2.23. Suppose that J is a subgroup of H such that $\left[J, H^{\dagger}\right]=1$ and that for each i, every $J H^{\dagger}$-invariant subgroup of U_{i} contains elements of U_{i}^{\sharp}. Then X is Moufang.

It follows by Notation 2.25 and Proposition 2.31 that Theorem 1.2 is the special case of Theorem 3.1 where $J=1$. Before we begin the proof of Theorem 3.1, we prove a preliminary result which (like Theorem 3.1 itself) we will need in the proof of Theorem 1.1:

Proposition 3.2. Let X be a 3-plump indifferent Tits quadrangle, let ($\gamma, i \mapsto$ $\left.w_{i}\right), i \mapsto U_{i}$ and U_{i}^{\sharp} for all i be as in Theorem 3.1. Suppose that the normalizer $N_{U_{i}}\left(U_{[i+2, i+3]}\right)$ is trivial for all i. Then $a^{2}=1, \mu_{\gamma}(b)^{2}=1$ and $\lambda_{\gamma}(b)=\kappa_{\gamma}(b)$ for all i, all $a \in U_{i}$ and all $b \in U_{i}^{\sharp}$.
Proof. Suppose X satisfies the hypotheses of Proposition 3.2. We proceed with the proof of Proposition 3.2 in a series of steps.

Proposition 3.3. For each i, the map $a_{i} \mapsto \mu_{\gamma}\left(a_{i}\right)$ from U_{i}^{\sharp} to G is injective, where μ_{γ} is as in (2.12).

Proof. It suffices to assume that $i=1$. Let $a_{1}, b_{1} \in U_{1}^{\sharp}$ and suppose that $\mu_{\gamma}\left(a_{1}\right)=\mu_{\gamma}\left(b_{1}\right)$. Choose $a_{4} \in U_{4}$. Applying the notation in Notation 2.29, we have

$$
\left[a_{1}, a_{4}^{-1}\right]_{2}=a_{4}^{\mu_{\gamma}\left(a_{1}\right)}=a_{4}^{\mu_{\gamma}\left(b_{1}\right)}=\left[b_{1}, a_{4}^{-1}\right]_{2}
$$

by Proposition 2.18(i). By Proposition 2.32, therefore, $\left[a_{1} b_{1}^{-1}, a_{4}\right]_{2}=1$. Since a_{4} is arbitrary, it follows by Proposition 2.6(i) that $a_{1} b_{1}^{-1} \in N_{U_{1}}\left(U_{[3,4]}\right)$. By hypothesis, therefore, $a_{1}=b_{1}$.

Proposition 3.4. $\kappa_{\gamma}\left(a_{i}\right)=a_{i}^{\mu_{\gamma}\left(a_{i}\right)}=\lambda_{\gamma}\left(a_{i}\right)$ for all i and all $a_{i} \in U_{i}^{\sharp}$, where κ_{γ} and λ_{γ} are as in (2.12).

Proof. Let $a_{i} \in U_{i}^{\sharp}$ for some i and let $m=\mu_{\gamma}\left(a_{i}\right)$. Then $\kappa_{\gamma}\left(a_{i}\right) \in U_{i+n}$, $\lambda_{\gamma}\left(a_{i}\right) \in U_{i+n}$ and by (2.13), also $a_{i}^{m} \in U_{i+n}$. By Proposition 2.14(ii) and (iii), we have $\mu_{\gamma}\left(a_{i}^{m}\right)=m^{m}=m=\mu_{\gamma}\left(\kappa_{\gamma}\left(a_{i}\right)\right)=\mu_{\gamma}\left(\lambda_{\gamma}\left(a_{i}\right)\right)$. The claim holds, therefore, by Proposition 3.3.

Proposition 3.5. The elements of U_{i}^{\sharp} are all of order 2 for all i.
Proof. It suffices to assume that $i=2$. Choose $a_{1} \in U_{1}^{\sharp}$ and $a_{2} \in U_{2}^{\sharp}$ and let $a_{4}=a_{2}^{\mu_{\gamma}\left(a_{1}\right)^{-1}}$. Then $a_{4} \in U_{4}^{\sharp}$ and $\left[a_{1}, a_{4}^{-1}\right]=a_{2} a_{3}$ for some $a_{3} \in U_{3}$ by Proposition 2.18(i). Hence $\left[a_{1}, a_{4}\right]=a_{2}^{-1} a_{3}^{-1}$ by Proposition 2.32. Let $a_{0}=a_{4}^{\mu_{\gamma}\left(a_{4}\right)}$. By Proposition 3.4, $\mu_{\gamma}\left(a_{4}\right)=a_{0} a_{4} a_{0}$ and $a_{0}=\kappa_{\gamma}\left(a_{4}\right)$. By Proposition 2.18(ii), therefore, $\left[a_{0}, a_{3}^{-1}\right]=a_{1} a_{2}$. Hence $\left[a_{0}, a_{3}\right]=a_{1}^{-1} a_{2}^{-1}$ by Proposition 2.32. By Conventions 1.3 and Proposition 2.6(i), we have

$$
\begin{aligned}
a_{1}^{a_{0} a_{4} a_{0}}=a_{1}^{a_{4} a_{0}} & =\left(a_{1} \cdot\left[a_{1}, a_{4}\right]\right)^{a_{0}} \\
& =\left(a_{1} a_{2}^{-1} a_{3}^{-1}\right)^{a_{0}}=a_{1} a_{2}^{-1} \cdot\left[a_{0}, a_{3}\right] \cdot a_{3}^{-1}=a_{2}^{-2} a_{3}^{-1} .
\end{aligned}
$$

By (2.13), we have $a_{1}^{\mu_{\gamma}\left(a_{4}\right)} \in U_{3}$. Hence by Proposition 2.6(ii), $a_{2}^{2}=1$. Thus the elements of U_{2}^{\sharp} are all of order 2. By Proposition 2.14(i), therefore, the elements of $\mu_{\gamma}\left(U_{2}^{\sharp}\right)$ are all of order 2.

Corollary 3.6. The elements of $\mu_{\gamma}\left(U_{i}^{\sharp}\right)$ are all of order 2 for all i.
Proof. This holds by Proposition 2.14(i) and Proposition 3.5.
Corollary 3.7. U_{i} is of exponent 2 for all i.
Proof. This holds by Propositions 2.22, 2.31 and 3.5.
With Proposition 3.4, Proposition 3.6 and Corollary 3.7, the proof of Proposition 3.2 is complete.

We use the rest of this section to prove Theorem 3.1. Suppose that X satisfies the hypotheses of Theorem 3.1. Again we proceed in a series of steps.
Proposition 3.8. $N_{U_{i}}\left(U_{[i+2, i+3]}\right)=1$ for all i and the assertions in Proposition 3.4 and Corollary 3.7 hold.

Proof. It suffices to assume that $i=1$. Let $b_{4} \in U_{4}^{*}$. If $c_{1} \in U_{1}^{\sharp}$, then $\left[c_{1}, b_{4}^{-1}\right]_{2} \neq 1$ by Proposition 2.18(i) and hence $c_{1} \notin N_{U_{1}}\left(U_{[3,4]}\right)$. Since X is sharp and the group $N_{U_{1}}\left(U_{[3,4]}\right)$ is $H U_{1}$-invariant, it follows that $N_{U_{1}}\left(U_{[3,4]}\right)=$ 1. By Proposition 3.2, therefore, the assertions in Proposition 3.4 and Corollary 3.7 hold.

Proposition 3.9. H^{\dagger} is an abelian group.
Proof. Let H_{i} for all i be as in Proposition 2.24. Then H_{1} centralizes U_{3} and H_{4} centralizes U_{2}. Thus $\left[H_{1}, H_{4}\right] \subset C_{H}\left(\left\langle U_{2}, U_{3}\right\rangle\right)$ and hence $\left[H_{1}, H_{4}\right]=1$ by Proposition 2.16. Now choose $m \in \mu_{\gamma}\left(U_{4}^{\sharp}\right)$ and $h, h^{\prime} \in H_{1}$. We have $H_{1}^{m}=H_{3}$ by (2.13) and m acts trivially on U_{2}. Thus $\left[h, h^{\prime}\right]$ induces the same permutation as $\left[h^{m}, h^{\prime}\right]$ on U_{2}. Since $\left[h^{m}, h^{\prime}\right] \in\left[H_{3}, H_{1}\right]=1$, we conclude that $\left[h, h^{\prime}\right] \in C_{H}\left(U_{2}\right)$. Since $h, h^{\prime} \in C_{H}\left(U_{3}\right)$, if follows by Proposition 2.16 that $\left[h, h^{\prime}\right]=1$. Thus H_{1} is abelian. Choosing $m \in \mu_{\gamma}\left(U_{1}^{\sharp}\right)$ and $h, h^{\prime} \in H_{4}$, we conclude that $\left[h, h^{\prime}\right]=1$ by a similar argument. Thus also H_{4} is abelian. Since $\left[H_{1}, H_{4}\right]=1$, therefore, the product $H_{1} H_{4}$ is an abelian group. Hence by Proposition 2.24, H^{\dagger} is abelian.

Proposition 3.10. Let H_{i} for all i be as in Proposition 2.24, let $h \in H_{i}$ and $m=\mu_{\gamma}\left(a_{i}\right)$ for some i and some $a_{i} \in U_{i}^{\sharp}$. Then $h^{m}=h^{-1}$.

Proof. It suffices to assume that $i=1$. We have

$$
H_{1}=\left\langle m \mu_{\gamma}\left(b_{1}\right) \mid b_{1} \in U_{1}^{\sharp}\right\rangle .
$$

By Corollary 3.6, $h^{m}=h^{-1}$ for $h=m \mu_{\gamma}\left(b_{1}\right)$ for all $b_{1} \in U_{1}^{\sharp}$. The claim holds, therefore, by Proposition 3.9.

Proposition 3.11. Let $e_{i} \in U_{i}^{\sharp}$ and $m_{i}=\mu_{\gamma}\left(e_{i}\right)$ for $i=1$ and 4 and let $N=\left\langle m_{1}, m_{4}\right\rangle$. Let

$$
e_{1+2 i}=e_{1}^{\left(m_{4} m_{1}\right)^{i}} \quad \text { and } \quad e_{4+2 i}=e_{4}^{\left(m_{4} m_{1}\right)^{i}}
$$

for all i. Then N is a dihedral group of order 8 and for all $i, e_{i}=e_{i+8}, e_{i} \in U_{i}^{\sharp}$, $e_{i}^{n}=e_{j}$ if $U_{i}^{n}=U_{j}$ for some $n \in N, \mu_{\gamma}\left(e_{i}\right)=\mu_{\gamma}\left(e_{i+4}\right) \in N$ and the normalizer of U_{i} in N centralizes U_{i}.
Proof. By (2.13), we have $e_{i} \in U_{i}^{\sharp}$ for all i. By Proposition 2.14(iii), it follows from $m_{1}, m_{4} \in N$ that $\mu_{\gamma}\left(e_{i}\right) \in N$ for all i. We have $m_{1} \in\left\langle U_{1}, U_{5}\right\rangle$. Applying (2.13) and Proposition 2.14(iii) again, we thus have $m_{1}^{m_{4}} \in\left\langle U_{3}, U_{7}\right\rangle$. Hence $\left[m_{1}, m_{1}^{m_{4}}\right]=1$. By Corollary 3.6, therefore, $\left(m_{4} m_{1}\right)^{2}=\left(m_{1} m_{4}\right)^{2}$ and N is a dihedral group of order 8. It follows that for all $i, e_{i}=e_{i+8}$ and $e_{i}^{n}=e_{j}$ if $U_{i}^{n}=U_{j}$ for some $n \in N$. Thus, in particular, $e_{i}^{m_{i}}=e_{i+4}$ and hence $\mu_{\gamma}\left(e_{i}\right)=\mu_{\gamma}\left(e_{i}\right)^{m_{i}}=\mu_{\gamma}\left(e_{i}^{m_{i}}\right)=\mu_{\gamma}\left(e_{i+4}\right)$ for all i by Proposition 2.14(iii). The normalizer of U_{i} in N is $\left\langle\mu_{\gamma}\left(e_{i+2}\right)\right\rangle$ for all i. Since $\left[U_{i}, \mu_{\gamma}\left(e_{i+2}\right)\right]=1$ for all i, the last claim holds.

Notation 3.12. Let H_{i} for all i be as in Proposition 2.24. For each i, let L_{i} denote the image of H_{i+1} in $\operatorname{Aut}\left(U_{i}\right)$ and let K_{i} denote the subring of $\operatorname{End}\left(U_{i}\right)$ generated by L_{i}. The elements of L_{i} are units of K_{i}. By Proposition 3.9, the ring K_{i} is commutative and by Corollary 3.7 (and Corollary 3.8), $2=0$ in K_{i}. Let $m \in \mu_{\gamma}\left(U_{i+2}^{\sharp}\right)$ for some i. Since $H_{i+1}^{m}=H_{i-1}$ and m centralizes U_{i}, L_{i} is also the image of H_{i-1} in $\operatorname{Aut}\left(U_{i}\right)$.

Proposition 3.13. Let N be as in Proposition 3.11 and suppose that $U_{i}^{n}=U_{j}$ for some $n \in N$ and some i, j. Then conjugation by n induces isomorphisms from L_{i} to L_{j} and from K_{i} to K_{j} that depend on i and j but not on n.
Proof. This holds by the last assertion in Proposition 3.11.
Notation 3.14. By Proposition 3.13 , we can use N to identify L_{i} with L_{j} and K_{i} with K_{j} whenever $i-j$ is even. We denote by φ_{i} the natural homomorphism from H_{i} to L_{i-1} for each i. By Proposition 3.13, $L_{i-1}=L_{i+1}$ and if $U_{j}=U_{i}^{n}$ for some $n \in N$, then

$$
\begin{equation*}
\varphi_{j}\left(h^{n}\right)=\varphi_{i}(h) \tag{3.15}
\end{equation*}
$$

for all $h \in H_{i}$.
Notation 3.16. Let e_{i} be as in Proposition 3.11 for all i. For all i and all $a_{i} \in U_{i}$, let $\rho_{i, a_{i}}$ denote the element of $\operatorname{Aut}\left(U_{i+1}\right)$ given by

$$
\rho_{i, a_{i}}\left(a_{i+1}\right)=\left[a_{i}, a_{i+1}^{\mu_{\gamma}\left(e_{i}\right)}\right]_{i+1}
$$

for all $a_{i+1} \in U_{i+1}$. If $a_{i} \in U_{i}^{\sharp}$ for some i, then by Proposition 2.18(i),

$$
\rho_{i, a_{i}}\left(a_{i+1}\right)=a_{i+1}^{\mu_{\gamma}\left(e_{i}\right) \mu_{\gamma}\left(a_{i}\right)}
$$

for all a_{i+1} and hence

$$
\begin{equation*}
\rho_{i, a_{i}}=\varphi_{i}\left(\mu_{\gamma}\left(e_{i}\right) \mu_{\gamma}\left(a_{i}\right)\right) \in L_{i+1} \tag{3.17}
\end{equation*}
$$

By Proposition 2.32, we have

$$
\begin{equation*}
\rho_{i, a_{i}}\left(a_{i+1}\right) \rho_{i, b_{i}}\left(a_{i+1}\right)=\rho_{i, a_{i} b_{i}}\left(a_{i+1}\right) \tag{3.18}
\end{equation*}
$$

for all $a_{i}, b_{i} \in U_{i}$ and all $a_{i+1} \in U_{i+1}$. By Proposition 2.22, therefore, $\rho_{i, a_{i}} \in$ K_{i+1} for all $a_{i} \in U_{i}$. We denote by ψ_{i} (for arbitrary i) the map from U_{i} to the additive group of K_{i+1} given by $\psi_{i}\left(a_{i}\right)=\rho_{i, a_{i}}$ for all $a_{i} \in U_{i}$. The elements of $\psi_{i}\left(U_{i}^{\sharp}\right)$ are invertible in K_{i} and $\psi_{i}\left(e_{i}\right)=1$ by (3.17), and by (3.18), ψ_{i} is a homomorphism.

Proposition 3.19. Let H_{i} be as in Proposition 2.24 and let φ_{i} and ψ_{i} be as in Notations 3.14 and 3.16 for some i. Then the following hold:
(i) φ_{i} is an isomorphism from H_{i} to L_{i+1}.
(ii) ψ_{i} is an injective homomorphism from U_{i} to the additive group of K_{i+1}.
(iii) $\psi_{i}\left(a_{i}^{h}\right)=\varphi_{i}(h)^{2} \psi_{i}\left(a_{i}\right)$ for all $a_{i} \in U_{i}$ and all $h \in H_{i}$.
(iv) K_{i+1} is generated by the image of ψ_{i}.

Proof. An element in the kernel of φ_{i} is contained in $C_{H}\left(\left\langle U_{i+1}, U_{i+2}\right\rangle\right)$. By Proposition 2.16, therefore, (i) holds. The kernel of ψ_{i} is $N_{U_{i}}\left(U_{[i+2, i+3]}\right)$. By Proposition 3.8, this normalizer is trivial. Thus (ii) holds. Let $a_{i} \in U_{i}^{\sharp}$ and $h \in H_{i}$. Then

$$
\begin{aligned}
\psi_{i}\left(a_{i}^{h}\right) & =\varphi_{i}\left(\mu_{\gamma}\left(a_{i}^{h}\right) \mu_{\gamma}\left(e_{i}\right)\right) & & \text { by }(3.17) \\
& =\varphi_{i}\left(\mu_{\gamma}\left(a_{i}\right)^{h} \mu_{\gamma}\left(e_{i}\right)\right) & & \text { by Proposition } 2.14(\text { iii }) \\
& =\varphi_{i}\left(h^{2} \mu_{\gamma}\left(a_{i}\right) \mu_{\gamma}\left(e_{i}\right)\right) & & \text { by Proposition } 3.10 \\
& =\varphi_{i}(h)^{2} \cdot \psi_{i}\left(a_{i}\right) & &
\end{aligned}
$$

Hence by Proposition 2.22, (iii) holds. By (3.17), L_{i+1} is contained in the subring of K_{i+1} generated by $\psi_{i}\left(U_{i}\right)$. Since K_{i+1} is generated by L_{i+1}, (iv) holds.

Notation 3.20. Let $\varepsilon=1$ or -1 and let $m_{i+\varepsilon} \in \mu_{\gamma}\left(U_{i+\varepsilon}^{\sharp}\right)$ for some i. We set $\alpha_{i}^{\varepsilon}(h)=\left[m_{i+\varepsilon}, h\right]$ for all $h \in H_{i}$. We also set $\alpha_{i}^{+}=\alpha_{i}^{\varepsilon}$ if $\varepsilon=1$ and $\alpha_{i}^{-}=\alpha_{i}^{\varepsilon}$ if $\varepsilon=-1$.

Proposition 3.21. Then for all i, the following hold:
(i) α_{i}^{ε} is a homomorphism from H_{i} to $H_{i+\varepsilon}$ for $\varepsilon=1$ and -1 .
(ii) α_{i}^{ε} is independent of the choice of $m_{i+\varepsilon}$ in Notation 3.20 for $\varepsilon=1$ and -1 .
(iii) $\alpha_{i}^{+}\left(\alpha_{i+1}^{-}(h)\right)=h^{2}$ for all $h \in H_{i+1}$.

Proof. Choose i and let $j=i+\varepsilon$ for $\varepsilon=1$ or -1 . If $h \in H_{i}$ and $a_{j} \in U_{j}^{\sharp}$, then $\left[\mu_{\gamma}\left(a_{j}\right), h\right]=\mu_{\gamma}\left(a_{j}\right) \mu_{\gamma}\left(a_{j}^{h}\right) \in H_{j}$ by Proposition 2.14(iii). By Conventions 1.3(ii) and Proposition 3.9, it follows that α_{i}^{ε} is a homomorphism. Thus (i) holds.

Choose $h \in H_{i}$ and let $m, m^{\prime} \in \mu_{\gamma}\left(U_{i+\varepsilon}^{\sharp}\right)$. Then $\left[\mathrm{mm}^{\prime}, h\right]=1$ by Proposition 3.9 and $[m, h]^{m^{\prime}}=[m, h]^{-1}$ by (i) and Proposition 3.10. By Conventions 1.3(i), therefore, $[m, h]=\left[m^{\prime}, h\right]$. Thus (ii) holds.

Let $h \in H_{i+1}, m \in \mu_{\gamma}\left(U_{i+1}^{\sharp}\right)$ and $m^{\prime} \in \mu_{\gamma}\left(U_{i}^{\sharp}\right)$. Then $m^{m^{\prime}}$ is contained in $\left\langle U_{i-1}, U_{i+3}\right\rangle$ and hence commutes with H_{i+1}. By Proposition 3.10, $h^{m}=h^{-1}$. Thus

$$
\begin{aligned}
{\left[m,\left[m^{\prime}, h\right]\right] } & =m \cdot h^{-1} m^{\prime} h m^{\prime} \cdot m \cdot m^{\prime} h^{-1} m^{\prime} h \\
& =m h^{-1} m^{\prime} \cdot h m^{m^{\prime}} h^{-1} \cdot m^{\prime} h \\
& =m h^{-1} m^{\prime} \cdot m^{m^{\prime}} \cdot m^{\prime} h=m h^{-1} m \cdot h=h^{2} .
\end{aligned}
$$

Thus (iii) holds.
Proposition 3.22. For each i and each $a_{i} \in U_{i}^{\sharp}$, let ξ_{i} be the map from K_{i} to K_{i+1} given by

$$
\begin{equation*}
\xi_{i}(s)=\psi_{i}\left(a_{i}\right)^{-1} \cdot \psi_{i}\left(s a_{i}\right) \tag{3.23}
\end{equation*}
$$

for all $s \in K_{i}$. Then the following hold:
(i) ξ_{i} is an injective homomorphism of rings from K_{i} to K_{i+1} mapping the identity 1 of K_{i} to the identity 1 of K_{i+1} that does not depend on the choice of a_{i}.
(ii) $\xi_{i+1}\left(\xi_{i}(s)\right)=s^{2}$ for all $s \in K_{i}$.
(iii) The map $s \mapsto s^{2}$ is an injective endomorphism of K_{i}.

Proof. Choose i and $a_{i} \in U_{i}^{\sharp}$. By Proposition 3.19(ii), ψ_{i} is injective. Hence ξ_{i} is injective. Let $j=i+\varepsilon$ for $\varepsilon=1$ or -1 , let $h \in H_{j}$ and let $s=\varphi_{j}(h)$. Then

$$
\begin{align*}
\psi_{i}\left(a_{i}\right)^{-1} \cdot \psi_{i}\left(s a_{i}\right) & =\psi_{i}\left(a_{i}\right)^{-1} \cdot \psi_{i}\left(a_{i}^{h}\right) \\
& =\varphi_{i}\left(\mu_{\gamma}\left(a_{i}\right) \mu_{\gamma}\left(e_{i}\right)\right) \cdot \varphi_{i}\left(\mu_{\gamma}\left(e_{i}\right) \mu_{\gamma}\left(a_{i}^{h}\right)\right) \\
& =\varphi_{i}\left(\mu_{\gamma}\left(a_{i}\right) \mu_{\gamma}\left(a_{i}^{h}\right)\right) \tag{3.24}\\
& =\varphi_{i}\left(\left[\mu_{\gamma}\left(a_{i}\right), h\right]\right)=\varphi_{i}\left(\alpha_{j}^{-\varepsilon}(h)\right) .
\end{align*}
$$

Thus by Proposition 3.21(ii), the restriction of ξ_{i} to $\varphi_{j}\left(H_{j}\right)$ is independent of the choice of a_{i} and, by Proposition 3.21(i), this restriction is multiplicative. Since K_{i} is generated by L_{i} additively, $\varphi_{j}\left(H_{j}\right)=L_{i}$ and ξ_{i} is additive, it follows that ξ_{i} is a homomorphism of rings that is independent of the choice of a_{i}. Thus (i) holds.

By (3.24), we have $\xi_{i} \circ \varphi_{i+1}=\varphi_{i} \circ \alpha_{i+1}^{-}$and $\xi_{i} \circ \varphi_{i-1}=\varphi_{i} \circ \alpha_{i-1}^{+}$(composing from right to left). Replacing i by $i+1$ in the second equation, we obtain $\xi_{i+1} \circ \varphi_{i}=\varphi_{i+1} \circ \alpha_{i}^{+}$. Thus

$$
\xi_{i+1} \circ \xi_{i} \circ \varphi_{i+1}=\xi_{i+1} \circ \varphi_{i} \circ \alpha_{i+1}^{-}=\varphi_{i+1} \circ \alpha_{i}^{+} \circ \alpha_{i+1}^{-}
$$

By Proposition 3.21(iii), therefore,

$$
\xi_{i+1}\left(\xi_{i}(s)\right)=s^{2}
$$

for all s in the subset $\varphi_{i+1}\left(H_{i+1}\right)=L_{i}$ of K_{i}. This subset generates K_{i} additively and, as was observed in Notation 3.12, $2=0$ in K_{i}. Thus (ii) holds. Since ξ_{i} and ξ_{i+1} are both injective homomorphisms, it follows that (iii) holds.

Corollary 3.25. Let σ be an automorphism of K_{i} for some i and suppose that $\sigma\left(s^{2}\right)=s^{2}$ for all $s \in K_{i}$. Then σ is the identity.

Proof. This follows from Proposition 3.22(iii).
Proposition 3.26. Let N be as in Proposition 3.11 and suppose that $U_{i}^{n}=U_{j}$ for some $n \in N$. Then $\psi_{j}\left(a_{i}^{n}\right)=\psi_{i}\left(a_{i}\right)$ for all $a_{i} \in U_{i}$.
Proof. Let $a_{i} \in U_{i}^{\sharp}$. Then

$$
\begin{aligned}
\psi_{j}\left(a_{i}^{n}\right) & =\varphi_{j}\left(\mu_{\gamma}\left(e_{j}\right) \mu_{\gamma}\left(a_{i}^{n}\right)\right) & & \text { by }(3.17) \\
& =\varphi_{j}\left(\mu_{\gamma}\left(e_{j}\right) \mu_{\gamma}\left(a_{i}\right)^{n}\right) & & \text { by Proposition } 2.14(\mathrm{iii}) \\
& =\varphi_{j}\left(\left(\mu_{\gamma}\left(e_{i}\right) \mu_{\gamma}\left(a_{i}\right)\right)^{n}\right) & & \text { by Proposition } 3.11
\end{aligned}
$$

$$
\begin{array}{ll}
=\varphi_{i}\left(\mu_{\gamma}\left(a_{i}\right) \mu_{\gamma}\left(e_{i}\right)\right) & \text { by (3.15) } \\
=\psi_{i}\left(a_{i}\right) & \text { by (3.17). }
\end{array}
$$

By Proposition 2.22, therefore, the claim holds.
Proposition 3.27. Let $b \in U_{i+3 \varepsilon}^{\sharp}$ for some i and for $\varepsilon=1$ or -1 . Then

$$
\psi_{i+2 \varepsilon}\left(a_{i}^{\mu_{\gamma}(b)}\right)=\psi_{i}\left(a_{i}\right) \cdot \xi_{i+2 \varepsilon}\left(\psi_{i+3 \varepsilon}(b)\right)
$$

for all $a_{i} \in U_{i}$, where ξ_{i} is as in Proposition 3.22.
Proof. It suffices to assume that $i=1$ and $\varepsilon=1$. Let $m_{4}=\mu_{\gamma}\left(e_{4}\right)$ (as in Proposition 3.11), let $m^{\prime}=\mu_{\gamma}(b)$ and choose $a_{1} \in U_{1}$. Then $\psi_{4}(b)=\varphi_{4}\left(m_{4} m^{\prime}\right)$ by (3.18) and thus

$$
\begin{aligned}
\psi_{3}\left(a_{1}^{m^{\prime}}\right) & =\psi_{3}\left(a_{1}^{m_{4} \cdot m_{4} m^{\prime}}\right) \\
& =\psi_{3}\left(\varphi_{4}\left(m_{4} m^{\prime}\right) a_{1}^{m_{4}}\right) \\
& =\psi_{3}\left(\psi_{4}(b) a_{1}^{m_{4}}\right) \\
& =\psi_{3}\left(a_{1}^{m_{4}}\right) \cdot \xi_{3}\left(\psi_{4}(b)\right)
\end{aligned}
$$

by (3.23). By Proposition 3.26, we have $\psi_{3}\left(a_{1}^{m_{4}}\right)=\psi_{1}\left(a_{1}\right)$.
Notation 3.28. Let $K=K_{4}$, let $F=\xi_{3}\left(K_{3}\right)$, let $\tilde{K}=\psi_{3}\left(U_{3}\right)$ and let $\tilde{F}=$ $\xi_{3}\left(\psi_{2}\left(U_{2}\right)\right)$. By Proposition 3.26, we have $\tilde{K}=\psi_{i}\left(U_{i}\right)$ for all odd i and

$$
\tilde{F}=\xi_{i+1}\left(\psi_{i}\left(U_{i}\right)\right)=\xi_{i+1}\left(\psi_{i+2}\left(U_{i+2}\right)\right)
$$

for all even i. By (3.17), we have $\psi_{3}\left(e_{3}\right)=\xi_{3}\left(\psi_{2}\left(e_{2}\right)\right)=1$, so both \tilde{K} and \tilde{F} contain 1. By Proposition 3.19 (ii) and (iv), \tilde{K} is an additive subgroup of K that generates K as a ring and (since ξ_{3} is a homomorphism of rings) \tilde{F} is an additive subgroup of F that generates F as a ring. The group U_{2} is generated by U_{2}^{\sharp} (by Proposition 2.22), $\psi_{1}\left(U_{1}\right)=\psi_{3}\left(U_{3}\right)$ and $\psi_{2}\left(U_{2}\right)=\psi_{4}\left(U_{4}\right)$. By Proposition 3.27, therefore, $\tilde{K} \tilde{F} \subset \tilde{K}$. By Proposition 3.22(ii), $\tilde{K}^{2}=\psi_{1}\left(U_{1}\right)^{2}=\xi_{3}\left(\xi_{2}\left(\psi_{1}\left(U_{1}\right)\right)\right)$ and by Proposition 3.27, $\xi_{2}\left(\psi_{1}\left(U_{1}\right)\right) \subset \psi_{2}\left(U_{2}\right)$. Therefore $\tilde{K}^{2} \tilde{F} \subset \xi_{3}\left(\psi_{2}\left(U_{2}\right)\right)=\tilde{F}$. We conclude that $(K, \tilde{K}, \tilde{F})$ satisfies all the properties of an indifferent set as defined in $[7,10.1]$ except that we do not know that K is a field.

Notation 3.29. Let \tilde{K} and \tilde{F} be as in Notation 3.28. By Proposition 3.19(ii) and Proposition 3.22(i), ψ_{i} is an isomorphism from U_{i} to the additive group of \tilde{K} for i odd and $\xi_{i-1} \circ \psi_{i}$ is an isomorphism from U_{i} to the additive group of \tilde{F} for i even. We set $x_{i}(s)=\psi_{i}^{-1}(s)$ for all $s \in \tilde{K}$ if i is odd and $x_{i}(t)=\left(\xi_{i-1} \circ \psi_{i}\right)^{-1}(t)$ for all $t \in \tilde{F}$ if i is even. Note that by (3.17), $x_{i}(1)=e_{i}$ for all i.

Proposition 3.30. $\left[x_{1}(s), x_{4}(t)\right]=x_{2}\left(s^{2} t\right) x_{3}(s t)$ for all $s \in \tilde{K}$ and all $t \in \tilde{F}$.

Proof. Let $a_{1}=x_{1}(s)$ for some $s \in \tilde{K}$ and $a_{4}=x_{4}(t)$ for some $t \in \tilde{F}$. By Proposition 2.22 and Proposition 2.32, it suffices to assume that $a_{i} \in U_{i}^{\sharp}$ for $i=1$ and 4. Let $n_{i}=\mu_{\gamma}\left(a_{i}\right)$ for $i=1$ and 4 . Then

$$
\left[a_{1}, a_{4}\right]=a_{4}^{n_{1}} a_{1}^{n_{4}}
$$

by Proposition 2.18,

$$
\psi_{3}\left(a_{1}^{n_{4}}\right)=\psi_{1}\left(a_{1}\right) \xi_{3}\left(\psi_{4}\left(a_{4}\right)\right)=s t
$$

by Proposition 3.27 and

$$
\xi_{3}\left(\psi_{2}\left(a_{4}^{n_{1}}\right)\right)=\xi_{3}\left(\psi_{4}\left(a_{4}\right)\right) \cdot \xi_{3}\left(\xi_{2}\left(\psi_{1}\left(a_{1}\right)\right)\right)=s^{2} t
$$

by Proposition 3.22(ii) and Proposition 3.27.
Proposition 3.31. $F \subset \tilde{K} F \subset \tilde{K}$ and $K^{2} \subset K^{2} \tilde{F} \subset \tilde{F} \subset F$.
Proof. By Notation $3.28, \tilde{K} \tilde{F} \subset \tilde{K}, F$ is generated by \tilde{F} as a ring and $1 \in \tilde{K}$. It follows that $F \subset \tilde{K} F \subset \tilde{K}$. Similarly, we know that $\tilde{K}^{2} \tilde{F} \subset \tilde{F}, K$ is generated by \tilde{K} as a ring and $1 \in \tilde{F}$ and hence $K^{2} \subset K^{2} \tilde{F} \subset \tilde{F}$.

Proposition 3.32. Let K^{\times}denote the group of invertible elements of K and suppose that $r \in \tilde{K}^{\times}:=\tilde{K} \cap K^{\times}$and $u \in \tilde{F}^{\times}:=\tilde{F} \cap K^{\times}$. Then $r^{-1} \in \tilde{K}$ and $u^{-1} \in \tilde{F}$.

Proof. By Proposition 3.31, $r^{-2} \subset \tilde{F}$ and $\tilde{F} K^{2} \subset \tilde{F}$. Hence $r^{-1}=r \cdot r^{-2} \in$ $\tilde{K} \tilde{F} \subset \tilde{K}$ and $u^{-1}=u \cdot u^{-2} \subset \tilde{F} K^{2} \subset \tilde{F}$.

Notation 3.33. Let $x_{0}(t)=x_{4}(t)^{m_{4}}$ and $x_{5}(t)=x_{1}(t)^{m_{1}}$, where m_{1} and m_{4} are as in Proposition 3.11 and thus $m_{1}=\mu_{\gamma}\left(x_{1}(1)\right)$ and $m_{4}=\mu_{\gamma}\left(x_{4}(1)\right)$ by Notation 3.29. By Proposition 2.18 and Proposition 3.30, we have $x_{4}(t)^{m_{1}}=$ $x_{2}(t)$ and $x_{3}(s)^{m_{4}}=x_{1}(s)$ for all $s \in \tilde{K}$ and all $t \in \tilde{F}$. Conjugating the relation in Proposition 3.30 by m_{4} and by m_{1}, we thus obtain

$$
\begin{equation*}
\left[x_{0}(t), x_{3}(s)\right]=x_{1}(s t) x_{2}\left(s^{2} t\right) \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[x_{2}(t), x_{5}(s)\right]=x_{3}(s t) x_{4}\left(s^{2} t\right) \tag{3.35}
\end{equation*}
$$

for all $s \in \tilde{K}$ and all $t \in \tilde{F}$.
Proposition 3.36. Let $s \in \tilde{K}$ and $t \in \tilde{F}$. Then $x_{1}(s) \in U_{1}^{\sharp}$ if and only if $s \in \tilde{K}^{\times}$and $x_{4}(t) \in U_{4}^{\times}$if and only if $t \in \tilde{F}^{\times}$.
Proof. Suppose that $x_{1}(s) \in U_{1}^{\sharp}$ for some $s \in \tilde{K}_{\tilde{K}}$ and $x_{4}(t) \in U_{4}^{\sharp}$ for some $t \in \tilde{F}$. Then $\lambda_{\gamma}\left(x_{1}(s)\right)=x_{5}(r)$ for some $r \in \tilde{K}$ and $\kappa_{\gamma}\left(x_{4}(t)\right)=x_{0}(u)$ for some $u \in \tilde{F}$. By Proposition 2.18(i) applied to $\left[x_{1}(s), x_{4}(1)\right]=x_{2}\left(s^{2}\right) x_{3}(s)$, we obtain $\left[x_{2}\left(s^{2}\right), x_{5}(r)\right]_{4}=x_{4}(1)$. By (3.35), it follows that $(s r)^{2}=1$. By Proposition 3.22(iii), therefore, $s r=1$ and hence $s \in \tilde{K}^{\times}$. By Proposition 2.18(ii) applied to $\left[x_{1}(1), x_{4}(t)\right]=x_{2}(t) x_{3}(t)$, we have $\left[x_{0}(u), x_{3}(t)\right]_{1}=x_{1}(1)$. By (3.34), it follows that $t u=1$. Hence $t \in \tilde{F}^{\times}$.

Suppose, conversely, that $s \in \tilde{K}^{\times}$and $t \in \tilde{F}^{\times}$. By Proposition 3.30, (3.34) and (3.35) and bit of calculation, we obtain

$$
U_{4}^{x_{1}(s) x_{5}\left(s^{-1}\right)}=U_{2} \quad \text { and } \quad U_{3}^{x_{0}\left(t^{-1}\right) x_{4}(t)}=U_{1} .
$$

Hence $x_{1}(s) \in U_{1}^{\sharp}$ and $x_{4}(t) \in U_{4}^{\sharp}$ by Proposition 2.19.
Proposition 3.37. $x_{1}(s)^{\mu_{\gamma}\left(x_{1}(1)\right) \mu_{\gamma}\left(x_{1}(r)\right)}=x_{1}\left(r^{2} s\right)$ for all $r \in \tilde{K}^{\times}$and all $s \in \tilde{K}$.

Proof. Let $\alpha_{r}=\mu_{\gamma}\left(x_{1}(1)\right) \mu_{\gamma}\left(x_{1}(r)\right)$ for all $r \in \tilde{K}^{\times}$. By Proposition 2.18 and Proposition 3.30, we have $x_{4}(t)^{\mu_{\gamma}\left(x_{1}(r)\right)}=x_{2}\left(r^{2} t\right)$ and hence $x_{4}(t)^{\alpha_{r}}=x_{4}\left(r^{-2} t\right)$ for all $r \in \tilde{K}^{\times}$and all $t \in \tilde{F}$. We have $\left[\mu_{\gamma}\left(U_{1}^{\sharp}\right), U_{3}\right]=1$. Conjugating the identity $\left[x_{1}(s), x_{4}(1)\right]_{3}=x_{3}(s)$ by α_{r} and then applying Proposition 3.30, we conclude that $x_{1}(s)^{\alpha_{r}}=x_{1}\left(r^{2} s\right)$ for all $r \in \tilde{K}^{\times}$and all $s \in \tilde{K}$.
Proposition 3.38. Let σ be an automorphism of K, let S denote the subgroup $\left\{s \mapsto r^{2} s \mid r \in \tilde{K}^{\times}\right\}$of the automorphism group of the additive group of K and suppose that $[\sigma, S]=1$. Then σ is the identity.

Proof. Since $[\sigma, S]=1$, we have $\sigma\left(r^{2}\right)=r^{2}$ for all $r \in \tilde{K}^{\times}$. By Proposition 2.22 and Proposition 3.36, \tilde{K} is generated additively by \tilde{K}^{\times}and as was observed in Proposition $3.28, K$ is generated as a ring by \tilde{K}. Therefore K is generated as a ring by \tilde{K}^{\times}. Hence $\sigma\left(s^{2}\right)=s^{2}$ for all $s \in K$. The claim holds, therefore, by Corollary 3.25.

Proposition 3.39. Let $h \in H$, where H is as in Notation 2.23. Then there exist $\rho \in \tilde{K}^{\times}$and $\sigma \in \operatorname{Aut}(K)$ such that $x_{1}(s)^{h}=x_{1}\left(\rho s^{\sigma}\right)$ for all $s \in \tilde{K}$.

Proof. There exist $\rho \in \tilde{K}$ and $\eta \in \tilde{F}$ such that

$$
\begin{equation*}
x_{1}(1)^{h}=x_{1}(\rho) \quad \text { and } \quad x_{4}(1)^{h}=x_{4}(\eta) \tag{3.40}
\end{equation*}
$$

By Proposition 3.36, $x_{i}(1) \in U_{i}^{\sharp}$ for $i=1$ and 4 and thus $\rho \in \tilde{K}^{\times}$and $\eta \in \tilde{F}^{\times}$.
By Notation 3.28 and Proposition 3.32, $\eta \tilde{K}=\tilde{K}$ and $\rho^{2} \tilde{F}=\tilde{F}$. We can thus set $\hat{x}_{1}(s)=x_{1}(\rho s)$ and $\hat{x}_{3}(s)=x_{3}(\rho \eta s)$ for all $s \in \rho^{-1} \tilde{K}$ and $\hat{x}_{2}(t)=x_{2}\left(\rho^{2} \eta t\right)$ and $\hat{x}_{4}(t)=x_{4}(\eta t)$ for all $t \in \eta^{-1} \tilde{F}$. By Proposition 3.30, we have

$$
\begin{equation*}
\left[\hat{x}_{1}(s), \hat{x}_{4}(t)\right]=\hat{x}_{2}\left(s^{2} t\right) \hat{x}_{3}(s t) \tag{3.41}
\end{equation*}
$$

for all $s \in \rho^{-1} \tilde{K}$ and all $t \in \eta^{-1} \tilde{F}$.
Next we let β_{i} be the map from \tilde{K} to $\rho^{-1} \tilde{K}$ such that $x_{i}(s)^{h}=\hat{x}_{i}\left(\beta_{i}(s)\right)$ for $i=1$ and 3 and all $s \in \tilde{K}$ and let β_{i} be the map from \tilde{F} to $\eta^{-1} \tilde{F}$ such that $x_{i}(s)^{h}=\hat{x}_{i}\left(\beta_{i}(t)\right)$ for $i=2$ and 4 and all $t \in \tilde{F}$. The maps β_{i} are all additive. By (3.40), we have $\beta_{1}(1)=1$ and $\beta_{4}(1)=1$. Conjugating the identity $\left[x_{1}(s), x_{4}(1)\right]_{3}=x_{3}(s)$ by h, we thus obtain $\hat{x}_{3}\left(\beta_{3}(s)\right)=$ $\left[\hat{x}_{1}\left(\beta_{1}(s)\right), \hat{x}_{4}(1)\right]_{3}$ for all $s \in \tilde{K}$ and hence $\beta_{1}=\beta_{3}$ by (3.41). Conjugating the identity $\left[x_{1}(1), x_{4}(t)\right]_{2}=x_{2}(t) x_{3}(t)$ by h, we obtain $\left[\hat{x}_{1}(1), \hat{x}_{4}\left(\beta_{4}(t)\right)\right]=$ $\hat{x}_{2}\left(\beta_{2}(t)\right) \hat{x}_{3}\left(\beta_{3}(t)\right)$ for all $t \in \tilde{F}$. By (3.41), it follows that $\beta_{2}=\beta_{4}$ and
that β_{4} is the restriction of β_{3} to \tilde{F}. Let $\beta=\beta_{1}$. Conjugating the identity $\left[x_{1}(s), x_{4}(t)\right]_{2}=x_{2}\left(s^{2} t\right)$ by h, we obtain $\left[\hat{x}_{1}(\beta(s)), \hat{x}_{4}(\beta(t))\right]_{2}=\hat{x}_{2}\left(\beta\left(s^{2} t\right)\right)$ and hence

$$
\beta(s)^{2} \beta(t)=\beta\left(s^{2} t\right)
$$

for all $s \in \tilde{K}$ and all $t \in \tilde{F}$ by one more application of (3.41). Setting $t=1$, it follows that $\beta(s)^{2}=\beta\left(s^{2}\right)$ for all $s \in \tilde{K}$ and since $K^{2} \subset \tilde{F} \subset \tilde{K}$ by Proposition 3.31, we thus obtain

$$
\begin{equation*}
\beta\left(s^{2}\right) \beta\left(u^{2}\right)=\beta\left(s^{2} u^{2}\right) \tag{3.42}
\end{equation*}
$$

for all $s \in \tilde{K}$ and all $u \in K$. Since \tilde{K} generates K, it follows that (3.42) holds for all $s, u \in K$. In other words, β restricts to an automorphism of K^{2}. By Proposition 3.22 (iii), every element of K^{2} has a unique square root in K. This implies that the map β has a unique extension to an automorphism σ if K. Hence $x_{1}(s)^{h}=\hat{x}_{1}\left(s^{\sigma}\right)=x_{1}\left(\rho s^{\sigma}\right)$ for all $s \in \tilde{K}$.

Proposition 3.43. Suppose that $\left[H^{\dagger}, h\right]=1$ for some $h \in H$. Then there exists $\rho \in \tilde{K}^{\times}$such that $x_{1}(s)^{h}=x_{1}(\rho s)$ for all $s \in \tilde{K}$.

Proof. By Proposition 3.37, the subgroup of $\operatorname{Aut}\left(U_{1}\right)$ induced by H^{\dagger} contains the group

$$
\left\{x_{1}(s) \mapsto x_{1}\left(r^{2} s\right) \mid r \in \tilde{K}^{\times}\right\}
$$

The claim holds, therefore, by Proposition 3.38 and Proposition 3.39.
Proposition 3.44. K and F are fields and X is Moufang.
Proof. Suppose $s \in \tilde{K}$ is a non-zero element that does not lie in K^{\times}and let I denote the principal ideal of K generated by s. Then $x_{1}(I \cap \tilde{K})$ is a non-trivial subgroup of U_{1}. By Proposition 3.36, either $x_{1}(I \cap \tilde{K}) \cap U_{1}^{\sharp}=\emptyset$ or $I=K$. By hypothesis, the subgroup J in Theorem 3.1 centralizes H^{\dagger}. By Proposition 3.43, therefore, the subgroup $x_{1}(I \cap \tilde{K})$ is J-invariant. Again by hypothesis, this implies that $x_{1}(I \cap \tilde{K}) \cap U_{1}^{\sharp} \neq \emptyset$. Hence $I=K$. We conclude that every non-zero element of \tilde{K} lies in K^{\times}and thus $U_{1}^{*}=U_{1}^{\sharp}$. By Proposition 3.31, $K^{2} \subset \tilde{K}$ and $K^{2} \subset F \subset K$. It follows from the first containment that K is a field and hence the second containment implies that also F is a field. By Proposition 3.36 again, it follows that $U_{4}^{*}=U_{4}^{\sharp}$. By Proposition 2.15, therefore, X is Moufang.

This concludes the proof of Theorem 3.1. Note that Notation 3.28 and Proposition 3.44, we now know that $(K, \tilde{K}, \tilde{F})$ is an indifferent set as defined in $[7,10.1]$. Thus by $[7,7.5]$ and Proposition $3.30, \Gamma$ is isomorphic to the Moufang polygon described in $[7,16.4]$ with $(K, \tilde{K}, \tilde{F})$ in place of $\left(K, K_{0}, F_{0}\right)$.

4. Octagons

Our goal in this section is to prove Theorem 1.1. Suppose that X satisfies the hypotheses of Theorem 1.1, let $\left(\gamma, i \mapsto w_{i}\right)$ and $i \mapsto U_{i}$ be as in Notation 2.4, let U_{i}^{\sharp} for all i be as in Proposition 2.11 and let H be as in Notation 2.23.

Let V_{i} for all i be as in Notation 2.33. We have $V_{i} \subset U_{i}$ and $\left[V_{i}, U_{j}\right]=1$ whenever $|i-j| \leq 4$. By Proposition 2.34, we can assume that the map $i \mapsto w_{i}$ has been chosen so that $V_{i} \neq 1$ for all even i. Since X is sharp, it follows that

$$
\begin{equation*}
V_{i} \cap U_{i}^{\sharp} \neq \emptyset \tag{4.1}
\end{equation*}
$$

for all even i. By (2.13), we have

$$
\begin{equation*}
V_{j}^{\mu_{\gamma}\left(a_{i}\right)}=V_{2 i+8-j} \tag{4.2}
\end{equation*}
$$

for all i, j and all $a_{i} \in U_{i}^{\sharp}$.
Remark 4.3. Let $a_{i} \in V_{i}^{\sharp}$ for some even i and let $\left(v_{0}, \ldots, v_{4}, v_{5}\right)$ be a straight 5 -path with $v_{0}=w_{i+4}$. By Definition 2.2 (iii) and Proposition 2.17, $U_{[i-4, i+4]}$ acts transitively on the set of straight 5 -paths that start at w_{i+4}. Since $w_{i+9}^{a_{i}}$ is opposite w_{i+9} at w_{i+8}, it follows that $v_{5}^{a_{i}}$ is opposite v_{5} at v_{4}.
Notation 4.4. Let u be a vertex at even distance from w_{4}. By Proposition 2.5 , we can choose an element $g \in G$ such that $u=w_{4}^{g}$. Let $M_{u}=\left(V_{0}^{\sharp}\right)^{g}$. By Remark 4.3, the set V_{0}^{\sharp} is normalized by the stabilizer $G_{w_{4}}$. Hence the set M_{u} is independent of the choice of g. In particular, $M_{w_{i}}=V_{w_{i-4}}^{\sharp}$ for all even i.
Proposition 4.5. Let v be a vertex at odd distance from w_{0} and let $u, z \in \Gamma_{v}$ be distinct. Then $M_{u} \cap M_{z}=\emptyset$, where M_{u} and M_{z} are as in Notation 4.4.
Proof. By Definition 2.2(i), we can choose a vertex y in Γ_{v} that is opposite both u and z. Let $\alpha=\left(v_{0}, \ldots, v_{8}\right)$ be a root with $v_{7}=y$ and $v_{8}=v$. By Definition 2.2(iii), there exists $g \in U_{\alpha}$ mapping u to z. Suppose that $a \in M_{u} \cap M_{z}$ and let $v_{4}^{\prime}=v_{4}^{a}$. By Remark 4.3 and Notation 4.4, v_{4}^{\prime} and v_{4} are opposite at v_{5}. By Proposition 2.9, a is the unique element of M_{z} mapping v_{4} to v_{4}^{\prime}. Since g acts trivially on $\Gamma_{v_{5}}$, the element $a^{g} \in\left(M_{u}\right)^{g}=M_{z}$ maps v_{4} to v_{4}^{\prime}. It follows that $[a, g]=1$. Thus $g \in G_{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{4}^{\prime}, v_{3}^{\prime}, v_{2}^{\prime}}^{(1)}$, where $v_{3}^{\prime}=v_{3}^{a}$ and $v_{2}^{\prime}=v_{2}^{a}$. Let $\beta=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{4}^{\prime}, v_{3}^{\prime}, v_{2}^{\prime}\right)$. Then β is a root (because v_{4}^{\prime} and v_{4} are opposite at v_{5}) and g is an element of U_{β} acting trivially on $\Gamma_{v_{2}^{\prime}}$. By Proposition 2.9, it follows that $g=1$. This contradicts the assumption that $u \neq z$.

Proposition 4.6. $\left[a_{1}, a_{6}^{-1}\right]=a_{6}^{\mu_{\gamma}\left(a_{1}\right)} \in V_{4}$ for all $a_{1} \in U_{1}^{\sharp}$ and all $a_{6} \in V_{6}$.
Proof. Let $a_{1} \in U_{1}^{\sharp}, a_{6} \in V_{6}, u_{9}=\kappa_{\gamma}\left(a_{1}\right), v_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and $m=\mu_{\gamma}\left(a_{1}\right)$. Thus $m=u_{9} a_{1} v_{9}$. By the choice of a_{1},

$$
\left(w_{10}, w_{9}, w_{10}^{\prime}, w_{11}^{\prime}\right)
$$

is a straight 3-path, where

$$
w_{i}^{\prime}=w_{i}^{a_{1}^{-1}}
$$

for $i=10$ and 11. By Notation 2.33,

$$
a_{6} \in G_{w_{10}, w_{9}, w_{10}^{\prime}, w_{11}^{\prime}}^{(1)}
$$

It follows that

$$
\left[a_{1}, a_{6}^{-1}\right] \subset G_{w_{6}, \ldots, w_{11}}^{(1)}
$$

By Proposition 2.8, therefore, $\left[a_{1}, a_{6}^{-1}\right] \in U_{[4,5]}$. Let $a_{k}=\left[a_{1}, a_{6}^{-1}\right]_{k}$ for $k=4$ and 5. Since $\left[a_{6}, u_{9}\right] \in\left[V_{6}, U_{9}\right]=1$, we have

$$
\begin{align*}
a_{4} a_{5} a_{6} & =\left[a_{1}, a_{6}^{-1}\right] \cdot a_{6}=\left[u_{9}^{-1} m v_{9}^{-1}, a_{6}^{-1}\right] \cdot a_{6} \\
& =\left[m v_{9}^{-1}, a_{6}^{-1}\right] \cdot a_{6}=v_{9} m^{-1} a_{6} m v_{9}^{-1} \tag{4.7}\\
& =a_{6}^{m} \cdot\left[a_{6}^{m}, v_{9}^{-1}\right]
\end{align*}
$$

by Conventions $1.3(\mathrm{i})$. By (4.2), we have $a_{6}^{m} \in V_{6}^{m}=V_{4}$. Thus by Proposition $2.6(\mathrm{i}),\left[a_{6}^{m}, v_{9}^{-1}\right] \in U_{[5,8]}$. By Proposition 2.6(ii) and (4.7), it follows that $a_{4}=$ $a_{6}^{m} \in V_{4}$. Hence

$$
\begin{equation*}
\left[a_{1}, a_{6}^{-1}\right]=a_{6}^{m} a_{5} \tag{4.8}
\end{equation*}
$$

The element $a_{6} \in V_{6}$ centralizes $U_{[2,8]}$. By Proposition 2.6(i), a_{1} normalizes $U_{[2,8]}$. It follows that $a_{4} a_{5}=\left[a_{1}, a_{6}^{-1}\right]$ centralizes $U_{[2,8]}$. Since $a_{4} \in V_{4}$ centralizes $U_{[2,8]}$, we conclude that

$$
\begin{equation*}
\left[a_{5}, U_{[2,8]}\right]=1 \tag{4.9}
\end{equation*}
$$

Choose $a_{10} \in V_{10}^{\sharp}$ and let $u=w_{9}^{a_{10}^{-1}}$ and $v=w_{8}^{a_{10}^{-1}}$. Then $\left(w_{9}, w_{10}, u, v\right)$ is a straight 3 -path. Hence there exists $b \in U_{[2,3]}$ such that $u^{b}=w_{11}$ and $v^{b}=w_{12}$. By (4.9), $\left[a_{5}, b\right]=1$. Since $a_{5} \in G_{w_{11}, w_{12}}^{(1)}$, it follows that $a_{5} \in G_{u, v}^{(1)}$. Therefore

$$
\begin{equation*}
\left[a_{5}, a_{10}\right] \in G_{w_{8}, w_{9}, \ldots, w_{12}}^{(1)} \tag{4.10}
\end{equation*}
$$

The element a_{10} centralizes $U_{[6,12]}$ and by Proposition 2.6(i), a_{5} normalizes $U_{[6,12]}$. It follows that $\left[a_{5}, a_{10}\right]$ centralizes $U_{[6,12]}$. Choose $a_{12} \in U_{12}^{\sharp}$. By (4.10), therefore,

$$
\begin{equation*}
\left[a_{5}, a_{10}\right] \in G_{w_{8}, w_{9}, \ldots, w_{11}, w_{12}, w_{11}^{\prime}, \ldots, w_{9}^{\prime}, w_{8}^{\prime}}^{(1)} \tag{4.11}
\end{equation*}
$$

where

$$
w_{i}^{\prime}=w_{i}^{a_{12}}
$$

for all $i \in[8,11]$. By the choice of a_{12}, the sequence

$$
\left(w_{8}, w_{9}, \ldots, w_{11}, w_{12}, w_{11}^{\prime}, \ldots, w_{9}^{\prime}, w_{8}^{\prime}\right)
$$

is a straight 8-path. By Proposition 2.9 and (4.11), it follows that

$$
\begin{equation*}
\left[a_{5}, a_{10}\right]=1 \tag{4.12}
\end{equation*}
$$

By the choice of a_{10},

$$
\left(w_{6}, w_{7}, w_{8}, w_{9}, w_{10}, w_{9}^{\prime \prime}, w_{8}^{\prime \prime}, w_{7}^{\prime \prime}, w_{6}^{\prime \prime}\right)
$$

is a straight 8 -path, where $w_{i}^{\prime \prime}=w_{i}^{a_{10}}$ for all $i \in[6,9]$, and by (4.12),

$$
a_{5} \in G_{w_{6}, w_{7}, w_{8}, w_{9}, w_{10}, w_{9}^{\prime \prime}, w_{8}^{\prime \prime}, w_{7}^{\prime \prime}, w_{6}^{\prime \prime}}^{(1)}
$$

By another application of Proposition 2.9, we conclude that $a_{5}=1$. By (4.8), therefore, the claim holds.

Corollary 4.13. $\left[U_{1},\left\langle V_{6}^{\sharp}\right\rangle\right] \subset\left\langle V_{4}^{\sharp}\right\rangle,\left[U_{1}, V_{6}\right] \subset V_{4}, U_{1}$ is abelian and for each $a_{6} \in V_{6}^{\sharp}$, the map $a_{1} \mapsto\left[a_{1}, a_{6}\right]$ from U_{1} to V_{4} is a faithful homomorphism.

Proof. By Conventions $1.3(\mathrm{ii})$ and Proposition 4.6, we have $\left[U_{1}^{\sharp},\left\langle V_{6}^{\sharp}\right\rangle\right] \subset\left\langle V_{4}^{\sharp}\right\rangle$ and $\left[U_{1}^{\sharp}, V_{6}\right] \subset V_{4}$. By Conventions 1.3(i) and Proposition 2.22, therefore, we have $\left[U_{1},\left\langle V_{6}^{\sharp}\right\rangle\right] \subset\left\langle V_{4}^{\sharp}\right\rangle$ and $\left[U_{1}, V_{6}\right] \subset V_{4}$. Choose $a_{6} \in V_{6}^{\sharp}$. By Conventions 1.3(i), the map $a_{1} \mapsto\left[a_{1}, a_{6}\right]$ from U_{1} to V_{4} is a homomorphism. Choose a_{1} in the kernel of this map and let $u=w_{10}^{a_{1}}$. Since $\left[a_{1}, a_{6}\right]=1$ and $a_{6} \in M_{w_{10}}$, we have $a_{6} \in M_{w_{10}} \cap M_{u}$ and hence $u=w_{10}$ by Proposition 4.5. By Proposition 2.9 , therefore, $a_{1}=1$. Thus the map $a_{1} \mapsto\left[a_{1}, a_{6}\right]$ is injective. Since V_{4} is abelian, it follows that U_{1} is too.

Remark 4.14. Let D be the dihedral group generated by the permutations $i \mapsto 8-i$ and $i \mapsto 10-i$ of \mathbb{Z}_{16}. By (2.13), Proposition 2.14(iii) and Proposition 4.6, we have

$$
\left[a_{i}, a_{j}^{-1}\right]=a_{j}^{\mu_{\gamma}\left(a_{i}\right)} \in V_{k}
$$

for all $a_{i} \in U_{i}^{\sharp}$ and $a_{j} \in V_{j}$ whenever $(i, j) \in(1,6)^{D}$. We will use this observation implicitly whenever we refer to Proposition 4.6. A similar comment applies to all the identities and assertions that follow. Thus, for example, it follows from Corollary 4.13 that $\left[U_{i}, V_{j}\right] \subset V_{j-2}$ whenever $(i, j) \in(1,6)^{D}$ and that U_{i} is abelian for all odd i.

Proposition 4.15. For each $a_{0} \in V_{0}^{\sharp}$ and each $a_{5} \in U_{5}^{\sharp}$,
(i) $\left[a_{2}, v_{8}\right]=a_{3} a_{5} a_{6}$ and
(ii) $\left[a_{5}, v_{8}\right]=a_{6}$,
where $v_{8}=\lambda_{\gamma}\left(a_{0}\right), a_{2}=a_{0}^{\mu_{\gamma}\left(a_{5}\right)}, a_{3}=\left(a_{5}^{-1}\right)^{\mu_{\gamma}\left(a_{0}\right)}$ and $a_{6}=a_{2}^{\mu_{\gamma}\left(a_{0}\right)}$.
Proof. Choose $a_{0} \in V_{0}^{\sharp}$ and $a_{5} \in U_{5}^{\sharp}$. Let $u_{8}=\kappa_{\gamma}\left(a_{0}\right), v_{8}=\lambda_{\gamma}\left(a_{0}\right), m=$ $\mu_{\gamma}\left(a_{0}\right), a_{2}=a_{0}^{\mu_{\gamma}\left(a_{5}\right)}, a_{3}=\left(a_{5}^{-1}\right)^{m}, a_{6}=a_{2}^{m}$ and $w_{0}=u_{8}^{m}$. Then $m=u_{8} a_{0} v_{8}$, $a_{k} \in U_{k}^{\sharp}$ for $k=2,3$ and 6 and $w_{0} \in U_{0}^{\sharp}$ by (2.13). By Proposition 2.6(i), $a_{2}^{m w_{0}^{-1}} \in U_{[1,5]} a_{6}$. Since $\left[a_{0}, a_{2}\right] \in\left[V_{0}, U_{2}\right]=1$, we have $a_{2}^{a_{0} v_{8}}=a_{2}^{v_{8}} \in a_{2} U_{[3,7]}$ by Proposition 2.6(i). Since $m w_{0}^{-1}=u_{8}^{-1} m=a_{0} v_{8}$, it follows that

$$
a_{2}^{v_{8}} \in a_{2} U_{[3,7]} \cap U_{[1,5]} a_{6} .
$$

Thus $a_{2}^{v_{8}} \in a_{2} U_{[3,5]} a_{6}$ by Proposition 2.6(ii).
By Proposition 4.6 and Remark 4.14, $\left[a_{5}, a_{0}^{-1}\right]=\left[a_{0}, a_{5}\right]=a_{2}$, so

$$
a_{2}^{v_{8}}=\left(\left(a_{5}^{-1}\right)^{a_{0}} a_{5}\right)^{v_{8}}=\left(a_{5}^{-1}\right)^{m w_{0}^{-1}} a_{5}^{v_{8}} .
$$

We have $\left(a_{5}^{-1}\right)^{m w_{0}^{-1}}=a_{3}^{w_{0}^{-1}} \in U_{[1,2]} a_{3}$ and $a_{5}^{v_{8}} \in a_{5} U_{[6,7]}$ by Proposition 2.6(i). Thus

$$
a_{2}^{v_{8}} \in U_{[1,2]} a_{3} \cdot a_{5} U_{[6,7]} .
$$

By Proposition 2.6(ii) and the conclusion of the previous paragraph, therefore, $a_{2}^{v_{8}}=a_{2} a_{3} a_{5} a_{6}$ and $a_{5}^{v_{8}}=a_{5} a_{6}$.
Corollary 4.16. $\left[U_{5}, \lambda_{\gamma}\left(V_{0}^{\sharp}\right)\right] \subset\left\langle V_{6}^{\sharp}\right\rangle$.
Proof. By Proposition 4.15 (ii), $\left[U_{5}^{\sharp}, \lambda_{\gamma}\left(V_{0}^{\sharp}\right)\right] \subset V_{6}^{\sharp}$. The claim follows by Conventions 1.3(i) and Proposition 2.22 since $\left[U_{5}, V_{6}\right]=1$.

Proposition 4.17. $\left[U_{5}, U_{7}\right]=\left[U_{3}, U_{7}\right]=1$.
Proof. Choose $a_{0} \in V_{0}^{\sharp}$ and let $v_{8}=\lambda_{\gamma}\left(a_{0}\right)$ and $m=\mu_{\gamma}\left(a_{0}\right)$. Choose $a_{3} \in U_{3}^{\sharp}$ and $a_{7} \in U_{7}^{\sharp}$ and let $a_{5}=\left(a_{3}^{-1}\right)^{m^{-1}}$. By Proposition 4.15(i), $\left[a_{2}, v_{8}\right]=a_{3} a_{5} a_{6}$ for $a_{2}=a_{0}^{\mu_{\gamma}\left(a_{5}\right)}$ and $a_{6}=a_{2}^{m}$. By Proposition 4.6, $\left[a_{7}, a_{2}^{-1}\right]=a_{4}$ and therefore $a_{2}^{a_{7}}=a_{4} a_{2}$ for $a_{4}=a_{2}^{\mu_{\gamma}\left(a_{7}\right)} \in V_{4}$. Thus $\left[a_{2}, v_{8}\right]^{a_{7}}=\left[a_{4} a_{2}, v_{8}\right]$ since $\left[U_{7}, U_{8}\right]=1$. Since $\left[a_{4}, v_{8}\right] \in\left[V_{4}, U_{8}\right]=1$, we have $\left[a_{4} a_{2}, v_{8}\right]=\left[a_{2}, v_{8}\right]$ by Conventions 1.3(i). Thus

$$
\begin{equation*}
\left[a_{3} a_{5} a_{6}, a_{7}\right]=\left[\left[a_{2}, v_{8}\right], a_{7}\right]=1 . \tag{4.18}
\end{equation*}
$$

We have $\left[a_{6}, U_{[3,7]}\right] \in\left[V_{6}, U_{[3,7]}\right]=1$ and thus $\left[a_{3} a_{5} a_{6}, a_{7}\right]=\left[a_{3} a_{5}, a_{7}\right]$. By Proposition 2.6(i) and Corollary 4.13, we have $\left[a_{5},\left[a_{3}, a_{7}\right]\right] \in\left[a_{5}, U_{[4,6]}\right]=1$. By Conventions 1.3(i), therefore, $\left[a_{3} a_{5}, a_{7}\right]=\left[a_{3}, a_{7}\right] \cdot\left[a_{5}, a_{7}\right]$. Hence $\left[a_{3}, a_{7}\right]=$ $\left[a_{5}, a_{7}\right]^{-1}$ by (4.18). We conclude that $\left[U_{3}^{\sharp}, U_{7}^{\sharp}\right]=\left[U_{5}^{\sharp}, U_{7}^{\sharp}\right]$. By Proposition 2.6(i), $\left[U_{5}, U_{7}\right] \subset U_{6}$ and thus $\left[U_{3}^{\sharp}, U_{7}^{\sharp}\right] \subset U_{6}$. By Remark 4.14, $\left[U_{3}^{\sharp}, U_{7}^{\sharp}\right] \subset U_{6}$ implies that $\left[U_{3}^{\sharp}, U_{7}^{\sharp}\right] \subset U_{4}$. By Proposition 2.6(ii), $U_{4} \cap U_{6}=1$. It follows that $\left[U_{5}^{\sharp}, U_{7}^{\sharp}\right]=\left[U_{3}^{\sharp}, U_{7}^{\sharp}\right]=1$. By Proposition 2.22, therefore, the claim holds.

Proposition 4.19. $\left[U_{1}, U_{7}\right] \subset U_{3} U_{5}$.
Proof. Let i be odd. By Proposition 4.17, $\left[U_{i}, U_{i+2}\right]=1$. By Definition 2.2(iii), it follows that $U_{i} \subset G_{u}^{(1)}$ for all u opposite w_{i+1} at w_{i+2} and $U_{i+2} \subset G_{v}^{(1)}$ for all v opposite w_{i+7} at w_{i+8}. Thus

$$
\left[U_{1}^{\sharp}, U_{7}^{\sharp}\right] \subset G_{w_{6}, \ldots, w_{10}}^{(1)} .
$$

By 2.8 , therefore, $\left[U_{1}^{\sharp}, U_{7}^{\sharp}\right] \subset U_{[3,5]}$.
Now choose $a_{1} \in U_{1}^{\sharp}$ and let $u_{9}=\kappa_{\gamma}\left(a_{1}\right), v_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and $m=\mu_{\gamma}\left(a_{1}\right)$, so $m=u_{9} a_{1} v_{9}$. Let $a_{7} \in U_{7}^{\sharp}$. Then $a_{7}^{m v_{9}^{-1}}=a_{7}^{u_{9} a_{1}}=a_{7}^{a_{1}} \in U_{[3,5]} a_{7}$ by the conclusion of the previous paragraph. Since $a_{7}^{m} \in U_{3}$ by (2.13), we also have $a_{7}^{m v_{9}^{-1}} \in a_{7}^{m} U_{[5,7]}$ by Remark 4.14 and the conclusion of the previous paragraph. Thus

$$
a_{7}^{a_{1}} \in a_{7}^{m} U_{[5,7]} \cap U_{[3,5]} a_{7} \subset a_{7}^{m} U_{5} a_{7}
$$

by Proposition 2.6(ii). Hence $\left[U_{1}^{\sharp}, U_{7}^{\sharp}\right] \subset U_{3} U_{5}$. The claim follows now by Conventions 1.3(i)-(ii), Proposition 2.22 and Proposition 4.17.
Proposition 4.20. Let

$$
\left.\hat{G}=H \cdot\left\langle U_{i}\right| i \text { odd }\right\rangle,
$$

where H is as in Notation 2.23. Then there exist an indifferent Tits quadrangle

$$
\hat{X}=\left(\hat{\Gamma}, \hat{\mathcal{A}},\left\{\hat{\overline{\underline{E}}}_{v}\right\}_{v \in \hat{V}}\right)
$$

a coordinate system $\left(\hat{\gamma}, i \mapsto \hat{w}_{i}\right)$ of \hat{X} with root group labeling $i \mapsto \hat{U}_{i}$ and a homomorphism φ from \hat{G} to $\operatorname{Aut}(\hat{X})$ such that $\varphi(H)$ is the pointwise stabilizer of $\hat{\gamma}$ in $\varphi(\hat{G})$ and the restriction of φ to U_{i} is an isomorphism from U_{i} to $\hat{U}_{(i+1) / 2}$ for all odd i.

Proof. Let Φ_{8} be as in $[1,2.1]$ and let α_{i} denote the root $\left(w_{i}, w_{i+1}, \ldots, w_{i+n}\right)$ for each i. We identify Φ_{8} with $\left\{\alpha_{i} \mid i \in \mathbb{Z}\right\}$ as described in [1, 4.7]. By [1, 5.1], the map $\alpha_{i} \mapsto U_{i}$ is a stable Φ_{8}-grading of G with torus H as defined in [1, 2.3]. By Proposition 2.11, we can assume that the set $M_{\alpha_{i}}$ that appears in [1, 2.3(iii)] equals $\mu_{\gamma}\left(U_{i}^{\sharp}\right)$. After identifying $\left\{\alpha_{i} \mid i\right.$ odd $\}$ with Φ_{4}, we observe that the restriction of the map $\alpha_{i} \mapsto U_{i}$ to $\left\{\alpha_{i} \mid i\right.$ odd $\}$ is a stable Φ_{4}-grading of \hat{G} with torus H (and with the same sets $M_{\alpha_{i}}$). Let \hat{X} be the Tits quadrangle obtained by applying $[1,5.2$ and 5.3$]$ to this Φ_{4}-grading, let $\left(\hat{\gamma}, i \mapsto \hat{w}_{i}\right)$ be the coordinate system of \hat{X} described in $[1,5.7]$ and let $i \mapsto \hat{U}_{i}$ be the corresponding root group labeling. Let φ be the homomorphism from \hat{G} to $\operatorname{Aut}(\hat{X})$ corresponding to the action of \hat{G} on \hat{X} by right multiplication. Then by $[1,5.3], \varphi(H)$ is the pointwise stabilizer of $\hat{\gamma}$ in $\varphi(\hat{G})$. By [1, 5.19], the restriction of φ to U_{i} is an isomorphism from U_{i} to $\hat{U}_{(i+1) / 2}$ for all odd i. By Definition 2.30, Remark 4.14 and Proposition 4.17, \hat{X} is indifferent.
Proposition 4.21. $\varphi\left(U_{i}^{\sharp}\right)=\hat{U}_{(i+1) / 2}^{\sharp}$ for all odd $i, \hat{\lambda}_{\hat{\gamma}} \circ \varphi=\varphi \circ \lambda_{\gamma}$ and $\hat{\kappa}_{\hat{\gamma}} \circ \varphi=\varphi \circ \kappa_{\gamma}$, where $\hat{U}_{(i+1) / 2}$ and φ are as in Proposition 4.20 and $\hat{\lambda}_{\hat{\gamma}}$ and $\hat{\kappa}_{\hat{\gamma}}$ are as in Proposition 2.11 applied to \hat{X}.

Proof. To prove the first claim, it suffices to assume that $i=1$. Let $\hat{a}_{1}=$ $\varphi\left(a_{1}\right)$ for some $a_{1} \in U_{1}$. Suppose first that $\hat{a}_{1} \in \hat{U}_{1}^{\sharp}$, let $\hat{c}_{9}=\hat{\lambda}_{\hat{\gamma}}\left(a_{1}\right)$ and let c_{9} be the unique element of U_{9} such that $\varphi\left(c_{9}\right)=\hat{c}_{9}$. By Proposition 2.11, we have $U_{9}^{a_{1} c_{9}}=U_{1}$. By Proposition 2.28, therefore, $a_{1} c_{9}$ maps the root $\left(w_{1}, w_{0}, w_{15}, \ldots, w_{9}\right)$ to the root $\left(w_{1}, w_{2}, w_{3}, \ldots, w_{9}\right)$. Since $U_{8}=G_{w_{9}, w_{10}, \ldots, w_{15}}^{(1)}$ and $U_{2}=G_{w_{3}, w_{4}, \ldots, w_{9}}^{(1)}$, it follows that $U_{8}^{a_{1} c_{9}}=U_{2}$. By Proposition 2.19(i), therefore, $a_{1} \in U_{1}^{\sharp}$ and $c_{9}=\lambda_{\gamma}\left(a_{1}\right)$. Suppose, conversely, that $a_{1} \in U_{1}^{\sharp}$, let $c_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and let $\hat{c}_{9}=\varphi\left(c_{9}\right)$. By Proposition 4.17 and Proposition 2.11 applied to X, we have $\hat{U}_{4}^{\hat{a}_{1} \hat{c}_{9}}=\hat{U}_{2}$. By Proposition 2.19(i) again, it follows that $\hat{a}_{1} \in \hat{U}_{1}^{\sharp}$ and $\hat{c}_{9}=\hat{\lambda}_{\hat{\gamma}}\left(\hat{a}_{1}\right)$. Thus $\varphi\left(U_{i}^{\sharp}\right)=\hat{U}_{(i+1) / 2}^{\sharp}$ and $\hat{\lambda}_{\hat{\gamma}} \circ \varphi=\varphi \circ \lambda_{\gamma}$. By Proposition 2.14(i), it follows that $\hat{\kappa}_{\hat{\gamma}} \circ \varphi=\varphi \circ \kappa_{\gamma}$.

Corollary 4.22. If \hat{X} is Moufang, then $U_{i}^{\sharp}=U_{i}^{*}$ for all odd i.
Proof. If \hat{X} is Moufang, then by Notations 2.3 and 2.10, $\hat{U}_{i}^{\sharp}=\hat{U}_{i}^{*}$ for all i. The claim holds, therefore, by Proposition 4.21.
Corollary 4.23. \hat{X} is sharp.
Proof. Let H^{\dagger} be as in Notation 2.23. Since X is dagger-sharp and U_{i} is abelian, every non-trivial H^{\dagger}-invariant subgroup of U_{i} for i odd contains elements of U_{i}^{\sharp}. Every non-trivial $\varphi\left(H^{\dagger}\right)$-invariant subgroup of \hat{U}_{j} is the image under φ of a non-trivial H^{\dagger}-invariant subgroup of U_{i}. By Proposition 4.21, it follows that for all j, every non-trivial $\varphi\left(H^{\dagger}\right)$-invariant subgroup of \hat{U}_{j} contains elements of \hat{U}_{j}^{\sharp}. Since \hat{U}_{j} is abelian for all j, it follows that \hat{X} is sharp.
Proposition 4.24. Let i be odd and let $j=(i+1) / 2$. Then there exists a bijection π_{i} from $\Gamma_{w_{i}}$ to $\hat{\Gamma}_{\hat{w}_{i}}$ mapping $\equiv_{w_{i}}$ to $\hat{\overline{=}}_{\hat{w}_{j}}$ and $w_{i+2 \varepsilon}$ to $\hat{w}_{j+\varepsilon}$ for $\varepsilon=1$ and -1 such that $\pi_{i}\left(u^{g}\right)=\pi_{i}(u)^{\varphi(g)}$ for all $g \in\left\langle U_{i}, H, U_{i+8}\right\rangle$.
Proof. Let $Q_{i}=\left\langle U_{i}, H, U_{i+8}\right\rangle$ and let

$$
S_{i}=\bigcap_{g \in\left\langle U_{i}, U_{i+8}\right\rangle} H^{g}
$$

By $[1,5.1]$, we can identify X with the Tits octagon that arises as in $[1,5.2-5.3]$ starting with $i \mapsto U_{i}$ and H. By [1,5.2(a)], the group Q_{i} acts transitively on $\Gamma_{w_{i}}$ and hence by [1,5.4(i)], S_{i} is the kernel of this action. Let $\hat{H}=\varphi(H)$. The homomorphism φ maps Q_{i} to $\hat{Q}_{j}:=\left\langle\hat{U}_{j}, \hat{H}, \hat{U}_{j+4}\right\rangle$ and S_{i} to

$$
\hat{S}_{j}:=\bigcap_{g \in\left\langle\hat{U}_{j}, \hat{U}_{j+4}\right\rangle} \hat{H}^{g}
$$

Suppose that $\varphi(g) \in \hat{H}$ for some $g \in Q_{i}$. Let $j=i$ or $i+8$. Then $\varphi\left(U_{j}\right)=$ $\hat{U}_{j}^{\varphi(g)}=\varphi\left(U_{j}^{g}\right)$. By [1, (2.4) and 5.1], we have $Q_{j}=U_{j} U_{j+8} U_{j} H$. Thus $g=a b c h$ with $a, c \in U_{j}, b \in U_{j+8}$ and $h \in H$. Thus

$$
\varphi\left(U_{j}^{g}\right)=\varphi\left(U_{j}^{b}\right)^{\varphi(c) \varphi(h)} .
$$

Since $\varphi(c)$ and $\varphi(h)$ normalize $\varphi\left(U_{j}\right)$, it follows that $\varphi\left(U_{j}^{b}\right)=\varphi\left(U_{j}\right)$. By Proposition 2.27 and Corollary 4.23, it follows that $b=1$. Hence $g=a c h$. Thus g normalizes both U_{i} and U_{i+8}. The group Q_{i} stabilizes both w_{i} and w_{i+8}. By Proposition 2.28, it follows that $g \in H$. We conclude that $\varphi^{-1}(\hat{H})=H$. Hence $\varphi^{-1}\left(S_{j}\right)=S_{i}$. Therefore φ induces an isomorphism from Q_{i} / S_{i} to $\hat{Q}_{j} / \hat{S}_{j}$.

It follows that φ induces a bijection from the set of right cosets of $B_{i}:=U_{i} H$ in Q_{i} to the set of right cosets of $\hat{B}_{j}:=\hat{U}_{j} \hat{H}$ in \hat{Q}_{j}. By [1, 5.4(i)], therefore, there exists a bijection π_{i} from $\Gamma_{w_{i}}$ to $\hat{\Gamma}_{\hat{w}_{j}}$ mapping w_{i+2} to \hat{w}_{j+1} such that $\pi_{i}\left(u^{g}\right)=\pi_{i}(u)^{\varphi(u)}$ for all $u \in Q_{i}$. Choose $a \in U_{i}^{\sharp}$ and let $\hat{a}=\varphi(a)$. By Proposition 4.21, $\hat{a} \in \hat{U}_{i}^{\sharp}$ and φ maps $m:=\mu_{\gamma}(a)$ to $\hat{m}:=\mu_{\hat{\gamma}}(\hat{a})$. Thus π_{i} maps $w_{i-2}=w_{i+2}^{m}$ to $\hat{w}_{j-1}=\hat{w}_{j+1}^{\hat{m}}$ and φ maps the double coset $B_{i} m B_{i}$ to the
double coset $\hat{B}_{j} \hat{m} \hat{B}_{j}$. Thus by $[1,5.2(\mathrm{c})]$, vertices $u, v \in \Gamma_{w_{i}}$ are opposite at w_{i} if and only if $\pi_{i}(u)$ and $\pi_{i}(v)$ are opposite at \hat{w}_{j}. In other words, π_{i} maps $\equiv_{w_{i}}$ to $\hat{\overline{=}}_{\hat{w}_{j}}$.
Corollary 4.25. \hat{X} is 5-plump.
Proof. By hypothesis, X is 9-plump. By Proposition 4.24, therefore, \hat{X} is also 9 -plump "at \hat{w}_{j} " for all j, so by Proposition $2.5, \hat{X}$ is 9 -plump. Thus, in particular, \hat{X} is 5 -plump.
Proposition 4.26. The normalizer $N_{\hat{U}_{1}}\left(\hat{U}_{3} \hat{U}_{4}\right)$ is trivial.
Proof. By Proposition 2.18(i), we have $N_{\hat{U}_{1}^{\sharp}}\left(\hat{U}_{3} \hat{U}_{4}\right)=\emptyset$. By Proposition 4.21, therefore, $N_{U_{1}^{\sharp}}\left(U_{5} U_{7}\right)=\emptyset$. Since X is dagger-sharp, it follows that $N_{U_{1}}\left(U_{5} U_{7}\right)$ $=1$. Hence $N_{\hat{U}_{1}}\left(\hat{U}_{3} \hat{U}_{4}\right)=1$.

Proposition 4.27. The following hold:

(i) $\exp \left(U_{i}\right)=\exp \left(V_{i+1}\right)=2$ for all odd i.
(ii) $\mu_{\gamma}\left(a_{0}\right)^{2}=\mu_{\gamma}\left(a_{1}\right)^{2}=1$ for all $a_{0} \in V_{0}^{\sharp}$ and $a_{1} \in U_{1}^{\sharp}$.
(iii) $\kappa_{\gamma}\left(a_{0}\right)=\lambda_{\gamma}\left(a_{0}\right)^{-1}$ and $\kappa_{\gamma}\left(a_{1}\right)=\lambda_{\gamma}\left(a_{1}\right)$ for all $a_{0} \in V_{0}^{\sharp}$ and $a_{1} \in U_{1}^{\sharp}$.

Proof. By Propositions 3.2, 4.21 and 4.26, we have $\exp \left(U_{i}\right)=2$ and $\kappa_{\gamma}\left(a_{i}\right)=$ $\lambda_{\gamma}\left(a_{i}\right)$ for all odd i and all $a_{i} \in U_{i}^{\sharp}$. Choose $a_{1} \in U_{1}^{\sharp}$ and $a_{4} \in V_{4}$. By Proposition 4.6, there exists $a_{6} \in V_{6}$ such that $\left[a_{1}, a_{6}\right]=a_{4}$. Then $a_{4}^{2}=$ $\left[a_{1}^{2}, a_{6}\right]=1$ since $\left[a_{1}, a_{4}\right] \in\left[U_{1}, V_{4}\right]=1$. Thus $\exp \left(V_{4}\right)=2$ and hence $\exp \left(V_{i}\right)=$ 2 for all even i. Thus (i) holds. By Proposition 2.14(i), it follows that (ii) and the first claim in (iii) hold.

Proposition 4.28. $\left[U_{4}, \kappa_{\gamma}\left(a_{0}\right)\right]=\left[U_{4}, \lambda_{\gamma}\left(a_{0}\right)\right]=1$ for all $a_{0} \in V_{0}^{\sharp}$.
Proof. Choose $a_{0} \in V_{0}^{\sharp}$ and let $u_{8}=\kappa_{\gamma}\left(a_{0}\right), v_{8}=\lambda_{\gamma}\left(a_{0}\right), m=\mu_{\gamma}\left(a_{0}\right)$ and

$$
\begin{equation*}
w_{0}=v_{8}^{m^{-1}} \tag{4.29}
\end{equation*}
$$

Then $v_{8} m^{-1} \cdot u_{8} a_{0}=1$ and hence $m=w_{0} u_{8} a_{0}$. Let $a_{4} \in U_{4}$. By (2.13), $a_{4}^{m} \in U_{4}$, so $\left[a_{0}, a_{4}^{m}\right] \in\left[V_{0}, U_{4}\right]=1$. Thus $a_{4}^{w_{0}}=a_{4}^{m a_{0}^{-1} u_{8}^{-1}}=a_{4}^{m u_{8}^{-1}}=$ $a_{4}^{m} \cdot\left[a_{4}^{m}, u_{8}^{-1}\right] \in a_{4}^{m} U_{[5,7]}$ by Proposition 2.6(i). On the other hand, $a_{4}^{w_{0}}=$ $\left[w_{0}, a_{4}^{-1}\right] \cdot a_{4} \in U_{[1,3]} a_{4}$ by Proposition 2.6(i). Thus by Proposition 2.6(ii), a_{4} commutes with m, u_{8} and w_{0}. By (4.29), a_{4} commutes with v_{8} as well.

Proposition 4.30. $\left[a_{2}, a_{8}\right]_{6}=a_{2}^{\mu_{\gamma}\left(a_{8}\right)} \in V_{6}$ and $\left[a_{2}, a_{8}\right]_{7}=1$ for each $a_{2} \in V_{2}$ and $a_{8} \in U_{8}^{\sharp}$.
Proof. Choose $a_{2} \in V_{2}$ and $a_{8} \in U_{8}^{\sharp}$. Let $u_{0}=\kappa_{\gamma}\left(a_{8}\right), v_{0}=\lambda_{\gamma}\left(a_{8}\right)$ and $m=\mu_{\gamma}\left(a_{8}\right)$, so $m=u_{0} a_{8} v_{0}$. Then $a_{2}^{m}=a_{2}^{u_{0} a_{8} v_{0}}=a_{2}^{a_{8} v_{0}}=a_{2} \cdot\left[a_{2}, a_{8}\right]^{v_{0}}$ since $\left[U_{0}, a_{2}\right] \subset\left[U_{0}, V_{2}\right]=1$. By Proposition 2.6(i), $a_{2} \cdot\left[a_{2}, a_{8}\right]^{v_{0}} \in U_{[1,6]} a_{7}$, where $a_{7}=\left[a_{2}, a_{8}\right]_{7}$. By (2.13), $a_{2}^{m} \in V_{6}$. By Proposition 2.6(ii), therefore, $a_{7}=1$.

Thus $a_{2} \cdot\left[a_{2}, a_{8}\right]^{v_{0}} \in U_{[1,5]} a_{6}$, where $a_{6}=\left[a_{2}, a_{8}\right]_{6}$. By Proposition 2.6(ii) again, we conclude that $a_{6}=a_{2}^{m}$.

Corollary 4.31. $\left[a_{2}, a_{8}\right] \in U_{[3,5]} \cdot\left\langle V_{6}^{\sharp}\right\rangle$ for all $a_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$ and all $a_{8} \in U_{8}^{\sharp}$.
Proof. This holds by Proposition 2.6(i) and Proposition 4.30.
Corollary 4.32. $\left[\left\langle V_{2}^{\sharp}\right\rangle,\left\langle V_{8}^{\sharp}\right\rangle\right] \subset\left\langle V_{4}^{\sharp}\right\rangle U_{5}\left\langle V_{6}^{\sharp}\right\rangle$.
Proof. By Proposition 2.6(i) and Proposition 4.30, $\left[V_{2}^{\sharp}, V_{8}^{\sharp}\right] \subset U_{[3,5]} V_{6}^{\sharp}$. By Remark 4.14, therefore, $\left[V_{2}^{\sharp}, V_{8}^{\sharp}\right] \subset V_{4}^{\sharp} U_{[5,7]}$. Hence

$$
\left[V_{2}^{\sharp}, V_{8}^{\sharp}\right] \subset V_{4}^{\sharp} U_{[5,7]} \cap U_{[3,5]} V_{6}^{\sharp}=V_{4}^{\sharp} U_{5} V_{6}^{\sharp}
$$

by Proposition 2.6(ii). The claim follows now by Conventions 1.3(i)-(ii).
Proposition 4.33. Let $a_{0} \in V_{0}^{\sharp}$ and $a_{3} \in U_{3}^{\sharp}$. Then $\left[a_{3}, v_{8}\right]=a_{4} a_{5}$ and $\left[a_{3}, v_{8}^{-1}\right]=a_{4} a_{5} a_{6}$, where $v_{8}=\lambda_{\gamma}\left(a_{0}\right), a_{5}=a_{3}^{\mu_{\gamma}\left(a_{0}\right)}, a_{6}=a_{0}^{\mu_{\gamma}\left(a_{5}\right) \mu_{\gamma}\left(a_{0}\right)}$ and $a_{4}=a_{0}^{\mu_{\gamma}\left(a_{6}\right)}$.
Proof. Let $u_{8}=\kappa_{\gamma}\left(a_{0}\right), v_{8}=\lambda_{\gamma}\left(a_{0}\right), m=\mu_{\gamma}\left(a_{0}\right), a_{5}=a_{3}^{m}$ and $w_{0}=u_{8}^{m}$. Then $m=u_{8} a_{0} v_{8}$. By (2.13), $a_{5} \in U_{5}^{\sharp}$ and $w_{0} \in U_{0}$. By Proposition 2.6(i), therefore, $a_{3}^{m w_{0}^{-1}} \in U_{[1,4]} a_{5}$ and, since $\left[a_{0}, a_{3}\right] \in\left[V_{0}, U_{3}\right]=1, a_{3}^{a_{0} v_{8}}=a_{3}^{v_{8}} \in$ $a_{3} U_{[4,7]}$. Since $m=a_{0} v_{8} w_{0}$, it follows that

$$
a_{3}^{v_{8}} \in a_{3} U_{[4,7]} \cap U_{[1,4]} a_{5} .
$$

Therefore $a_{3}^{v_{8}} \in a_{3} U_{4} a_{5}$ by Proposition 2.6(ii). Thus $\left[a_{3}, v_{8}\right]=a_{4} a_{5}$ for some $a_{4} \in U_{4}$. By Proposition 4.27(iii), $u_{8}=v_{8}^{-1}$. By Conventions 1.3(ii), therefore,

$$
1=\left[a_{3}, v_{8} u_{8}\right]=\left[a_{3}, u_{8}\right] \cdot\left(a_{4} a_{5}\right)^{u_{8}}
$$

By Proposition 4.28, $\left[a_{4}, u_{8}\right]=1$. By Proposition 4.15 (ii), $\left[a_{5}, v_{8}\right]=a_{6}$, where $a_{6}=a_{0}^{\mu_{\gamma}\left(a_{5}\right) m} \in V_{6}^{\sharp}$. Since $\left[a_{6}, U_{8}\right] \subset\left[V_{6}, U_{8}\right]=1$, it follows by Conventions 1.3(ii) that $\left[a_{5}, v_{8}^{-1}\right]=a_{6}^{-1}$. Hence

$$
\left[a_{5}, u_{8}\right]=\left[a_{5}, v_{8}^{-1}\right]=a_{6}
$$

by Proposition 4.27 (i). We conclude that $\left[a_{3}, u_{8}\right]=\left(a_{4} a_{5} a_{6}\right)^{-1}$. By Proposition 4.27 (i) , $\left(a_{4} a_{5} a_{6}\right)^{-1}=a_{4}^{-1} a_{5} a_{6}$ since $\left[a_{4}, a_{6}\right] \in\left[U_{4}, V_{6}\right]=1$. It remains to show only that $a_{4}=a_{0}^{\mu_{\gamma}\left(a_{6}\right)}$, since then $a_{4} \in V_{4}$ by (2.13) and thus $a_{4}=a_{4}^{-1}$ by Proposition 4.27(i).

Since $\left[a_{0}, a_{3} a_{4}^{-1}\right] \in\left[V_{0}, U_{[3,4]}\right]=1$, we have

$$
a_{3}^{u_{8} a_{0}}=\left(a_{3} \cdot\left[a_{3}, u_{8}\right]\right)^{a_{0}}=\left(a_{3} a_{4}^{-1} a_{5} a_{6}\right)^{a_{0}}=a_{3} a_{4}^{-1} a_{5}^{a_{0}} a_{6}^{a_{0}} .
$$

By Proposition 4.6, $a_{5}^{a_{0}} \in V_{2} a_{5}$. By Corollary 4.32, $\left[V_{0}^{\sharp}, V_{6}^{\sharp}\right] \subset V_{2} U_{3} V_{4}$ and hence

$$
\left[a_{0}, a_{6}\right] \in V_{2} U_{3} a_{0}^{\mu_{\gamma}\left(a_{6}\right)}
$$

by Proposition 4.30. Thus by Proposition 4.17,

$$
a_{3}^{u_{8} a_{0}}=a_{3} a_{4}^{-1} a_{5}^{a_{0}} a_{6}^{a_{0}} \in V_{2} a_{3} a_{4}^{-1} a_{5} a_{6}^{a_{0}} \subset V_{2} U_{3} a_{4}^{-1} a_{0}^{\mu_{\gamma}\left(a_{6}\right)} a_{5} a_{6}
$$

since $\left[V_{2}, U_{[3,5]}\right]=1$. On the other hand, $a_{3}^{u_{8} a_{0}}=a_{3}^{m u_{8}}=a_{5}^{u_{8}}=a_{5} a_{6}$ since $u_{8}=v_{8}^{-1}$. Thus $a_{4}=a_{0}^{\mu_{\gamma}\left(a_{6}\right)}$ by Proposition 2.6(ii).

By Proposition 4.27(i) $\exp \left(U_{i}\right)=\exp \left(V_{i+1}\right)=2$ for all odd i. From now on, we will use this fact without explicitly referring to Proposition 4.27(i).

Proposition 4.34. $N_{V_{2}}\left(U_{[4,8]}\right)=1$.
Proof. Let $a_{2} \in V_{2}^{\sharp}$ and $a_{5} \in U_{5}^{\sharp}$. By (2.13), we have $\lambda_{\gamma}\left(a_{2}^{\mu_{\gamma}\left(a_{5}\right)}\right) \in U_{8}$ and by Proposition 4.15(i),

$$
\left[a_{2}, \lambda_{\gamma}\left(a_{2}^{\mu_{\gamma}\left(a_{5}\right)}\right)\right]_{3} \neq 1
$$

Thus a_{2} does not normalize $U_{[4,8]}$. Since X is sharp, the claim follows.
Proposition 4.35. Suppose that $\left[a_{2}, a_{8}\right]_{5}=1$ for some $a_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$ and some $a_{8} \in V_{8}^{\sharp}$. Then $a_{2}=1$.
Proof. By Corollary 4.32, we have $\left[a_{2}, a_{8}\right] \in V_{4} V_{6}$. Thus $\left[\left[a_{2}, a_{8}\right], U_{8}\right]=1$. Since $\left[a_{8}, U_{8}\right] \in\left[V_{8}, U_{8}\right]=1$, it follows that $\left[\left[a_{2}, U_{8}\right], a_{8}\right]=1$ by $[7,2.3]$. Hence

$$
\left[a_{2}, U_{8}\right] \subset U_{[3,7]} \cap C_{G}\left(a_{8}\right)=U_{[4,7]}
$$

by Proposition 2.6(i) and Proposition 4.13. Thus a_{2} normalizes $U_{[4,8]}$. By Proposition 4.34, it follows that $a_{2}=1$.

Proposition 4.36. For each $a_{6} \in\left\langle V_{6}^{\sharp}\right\rangle$ and $a_{8} \in V_{8}^{\sharp}$, there exists $a_{3} \in U_{3}$ such that $\left[a_{3}, a_{8}\right]=a_{6}$.

Proof. Choose $a_{6} \in\left\langle V_{6}^{\sharp}\right\rangle$ and $a_{8} \in V_{8}^{\sharp}$ and let $u_{0}=\kappa_{\gamma}\left(a_{8}\right), v_{0}=\lambda_{\gamma}\left(a_{8}\right)$ and $m=\mu_{\gamma}\left(a_{8}\right)$. Let $a_{2}=a_{6}^{m}$. Then $a_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$ by (2.13) and $m=m^{-1}$ by Proposition 4.27 (ii). By Proposition 4.30 and Corollary 4.32, therefore, $\left[a_{2}, a_{8}\right] \in V_{4} U_{5} a_{6}$. Let $a_{5}=\left[a_{2}, a_{8}\right]_{5}, a_{3}=a_{5}^{m}$ and $b_{2}=\left[v_{0}^{-1}, a_{3}\right]$. By (2.13), $a_{3} \in U_{3}$ and thus

$$
\begin{equation*}
\left[a_{3}, a_{8}\right] \in V_{6} \tag{4.37}
\end{equation*}
$$

by Corollary 4.13. By Corollary 4.16, we have $\left[\lambda_{\gamma}\left(V_{8}^{\sharp}\right), U_{3}\right] \subset\left\langle V_{2}^{\sharp}\right\rangle$. Thus $\left[v_{0}, a_{3}\right] \in\left\langle V_{2}^{\sharp}\right\rangle$. Since $\left[U_{0}, V_{2}\right]=1$, it follows that $b_{2}=\left[v_{0}, a_{3}\right]^{-1} \in\left\langle V_{2}^{\sharp}\right\rangle$. Hence

$$
a_{3}^{v_{0}^{-1}}=\left[v_{0}^{-1}, a_{3}\right] \cdot a_{3}=b_{2} a_{3}
$$

by Proposition $4.27(\mathrm{i})$. Thus by Corollary 4.32, we have

$$
\begin{align*}
a_{5}^{m v_{0}^{-1} a_{8}} & =a_{3}^{v_{0}^{-1} a_{8}}=\left(b_{2} a_{3}\right)^{a_{8}} \\
& =b_{2} \cdot\left[b_{2}, a_{8}\right] \cdot a_{3} \cdot\left[a_{3}, a_{8}\right] \tag{4.38}\\
& \in U_{[2,4]} \cdot\left[b_{2}, a_{8}\right]_{5} \cdot\left[b_{2}, a_{8}\right]_{6} \cdot\left[a_{3}, a_{8}\right]
\end{align*}
$$

since $\left[a_{3},\left[b_{2}, a_{8}\right]_{6}\right] \in\left[U_{3},\left[V_{2}, V_{8}\right]_{6}\right] \subset\left[U_{3}, V_{6}\right]=1$. We have $m v_{0}^{-1} a_{8}=u_{0}$. Since $a_{5}^{u_{0}} \in U_{[1,4]} a_{5}$, we conclude that

$$
\left[b_{2}, a_{8}\right]_{5}=a_{5} \text { and }\left[b_{2}, a_{8}\right]_{6}=\left[a_{3}, a_{8}\right]
$$

by Proposition 2.6(ii), (4.37) and (4.38). Since $\left[b_{2},\left[a_{2}, a_{8}\right]\right] \in\left[V_{2}, U_{[4,6]}\right]=1$, the first of these equations implies that $\left[a_{2} b_{2}, a_{8}\right]_{5}=a_{5}^{2}=1$, so $a_{2}=b_{2}$ by Proposition 4.35. Thus $\left[a_{3}, a_{8}\right]=\left[b_{2}, a_{8}\right]_{6}=\left[a_{2}, a_{8}\right]_{6}=a_{6}$.
Proposition 4.39. Let $a_{3} \in U_{1}, a_{6} \in V_{6}^{\sharp}$ and $a_{8} \in V_{8}^{\sharp}$ and suppose that $\left[a_{3}, a_{8}\right]=a_{6}$. Then $a_{3} \in U_{3}^{\sharp}$.
Proof. Let $u=w_{12}^{a_{3}}$ and let $b=a_{8}^{a_{3}}$. Then $a_{8} \in M_{w_{12}}$ and $b \in M_{u}$, where $M_{w_{12}}$ and M_{u} are as in Notation 4.4. Since a_{3} fixes w_{10} and w_{11}, u is opposite w_{10} at w_{11}. Since $\left[a_{3}, a_{8}\right]=a_{6}$, we $a_{6} a_{8}=b \in M_{u}$. By Proposition 4.5, u is the unique vertex in $\Gamma_{w_{11}}$ such that $a_{6} a_{8}$ is contained in M_{u}. By Proposition 4.36, it follows that for all $a_{6} \in V_{6}^{\sharp}$ and $a_{8} \in V_{8}^{\sharp}$, there exists a unique vertex u in $\Gamma_{w_{11}}$ such that $a_{6} a_{8} \in M_{u}$ and u is opposite w_{10} at w_{11}. By symmetry, the vertex u is also opposite w_{12} at w_{11}. Thus $a_{1} \in U_{1}^{\sharp}$ by Notation 2.10.
Proposition 4.40. $\left[U_{2}, U_{5}\right] \subset\left\langle V_{4}^{\sharp}\right\rangle$.
Proof. Choose $a_{0} \in V_{0}^{\sharp}, b_{2} \in U_{2}$ and $a_{5} \in U_{5}^{\sharp}$ and let $v_{8}=\lambda_{\gamma}\left(a_{0}\right)$ and $a_{2}=a_{0}^{\mu_{\gamma}\left(a_{5}\right)}$. By (2.13), $a_{2} \in V_{2}^{\sharp}$, so $\left[a_{2}, b_{2}\right]=1$ and by Conventions 1.3(ii), Proposition 2.6(i) and Corollary 4.13,

$$
\left[a_{2},\left[b_{2}, v_{8}\right]\right] \in\left[a_{2}, U_{[3,7]}\right]=\left[a_{2}, U_{7}\right] \subset\left\langle V_{4}^{\sharp}\right\rangle
$$

since $\left[a_{2}, U_{[3,6]}\right] \subset\left[V_{2}, U_{[3,6]}\right]=1$. It follows that $\left[b_{2},\left[a_{2}, v_{8}\right]\right] \in\left\langle V_{4}^{\sharp}\right\rangle$ by $[7,2.3]$ applied to the quotient group $U_{[2,8]} /\left\langle V_{4}^{\sharp}\right\rangle$. By Proposition 4.15(i),

$$
\left[a_{2}, v_{8}\right] \in U_{3} a_{5} V_{6}=U_{3} V_{6} a_{5},
$$

so $\left[b_{2}, a_{5}\right]=\left[b_{2},\left[a_{2}, v_{8}\right]\right] \in\left\langle V_{4}^{\sharp}\right\rangle$ since $\left[U_{2}, U_{3} V_{6}\right]=1$. Thus $\left[U_{2}, U_{5}^{\sharp}\right] \subset\left\langle V_{4}^{\sharp}\right\rangle$. The claim holds, therefore, by Proposition 2.22.

Proposition 4.41. Let $v_{8}=a_{8} w_{8}$ for some $a_{8} \in V_{8}$ and some $w_{8} \in \lambda_{\gamma}\left(U_{0}^{\sharp}\right)$ and suppose that $v_{8} \in U_{8}^{\sharp}$. Then $a_{8} \in\left\langle V_{8}^{\sharp}\right\rangle$.

Proof. Let $a_{0}=\kappa_{\gamma}\left(v_{8}\right)$, so $a_{0} \in U_{0}^{\sharp}$ and by Proposition 2.14(iv), $v_{8}=\lambda_{\gamma}\left(a_{0}\right)$. Let $u_{8}=\kappa_{\gamma}\left(a_{0}\right), m=\mu_{\gamma}\left(a_{0}\right)$ and $w_{0}=u_{8}^{m}$. Choose $a_{3} \in U_{3}^{\sharp}$. Then $m=u_{8} a_{0} v_{8}$ and by (2.13), $a_{3}^{m} \in U_{5}^{\sharp}$ and $w_{0} \in U_{0}^{\sharp}$. Hence $a_{3}^{m w_{0}^{-1}} \in U_{[1,5]}$ by Proposition 2.6(i). Let $a_{2}=\left[a_{0}, a_{3}^{-1}\right]$. By Proposition 4.40, $a_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$. We have $a_{3}^{a_{0} v_{8}}=$ $\left(a_{2} a_{3}\right)^{v_{8}} \in U_{[2,7]}$ by Proposition 2.6(i). Since $m=a_{0} v_{8} w_{0}$, it follows that

$$
\left(a_{2} a_{3}\right)^{v_{8}} \in U_{[2,7]} \cap U_{[1,5]} .
$$

Therefore

$$
\begin{equation*}
\left(a_{2} a_{3}\right)^{v_{8}} \in U_{[2,5]} \tag{4.42}
\end{equation*}
$$

by Proposition 2.6(ii). By Corollary 4.31, $\left[a_{2}, v_{8}\right] \in U_{[3,5]} \cdot\left\langle V_{6}^{\sharp}\right\rangle$. Thus

$$
a_{2} \cdot\left[a_{2}, v_{8}\right] \cdot a_{3} \in U_{[2,5]}\left\langle V_{6}^{\#}\right\rangle .
$$

Since

$$
\left(a_{2} a_{3}\right)^{v_{8}}=a_{2} \cdot\left[a_{2}, v_{8}\right] \cdot a_{3} \cdot\left[a_{3}, v_{8}\right]
$$

it follows by Proposition 2.6(ii) and (4.42) that $\left[a_{3}, v_{8}\right] \in U_{[4,5]} \cdot\left\langle V_{6}^{\sharp}\right\rangle$. Since $\left[V_{8}, U_{[4,8]}\right]=1$, we have $v_{8}=w_{8} a_{8}$ and $\left[\left[a_{3}, w_{8}\right], a_{8}\right]=1$. Thus

$$
\left[a_{3}, v_{8}\right]=\left[a_{3}, w_{8} a_{8}\right]=\left[a_{3}, a_{8}\right] \cdot\left[a_{3}, w_{8}\right]^{a_{8}}=\left[a_{3}, a_{8}\right] \cdot\left[a_{3}, w_{8}\right]
$$

by Conventions 1.3 (ii). We have $\left[a_{3}, w_{8}\right] \in U_{[4,5]}$ by Proposition 4.33. Since $\left[V_{6}, U_{[4,5]}\right]=1$, it follows that $\left[a_{3}, a_{8}\right] \in U_{[4,5]} \cdot\left\langle V_{6}^{\sharp}\right\rangle$. By Proposition 4.6, therefore, $a_{8} \in\left\langle V_{8}^{\sharp}\right\rangle$.

Proposition 4.43. Let $a_{0} \in U_{0}^{\sharp}$. If $\left[a_{0}, a_{5}\right] \in U_{[1,2]}$ for some $a_{5} \in U_{5}$, then $\left[a_{0}, a_{5}\right] \in\left\langle V_{2}^{\sharp}\right\rangle$.

Proof. Suppose that $\left[a_{0}, a_{5}\right]=a_{1} a_{2}$ with $a_{0} \in U_{0}^{\sharp}$ and $a_{i} \in U_{i}$ for $i=1,2$ and 5. Let $u_{8}=\kappa_{\gamma}\left(a_{0}\right), v_{8}=\lambda_{\gamma}\left(a_{0}\right)$ and $m=\mu_{\gamma}\left(a_{0}\right)$. Then $a_{5}^{m} \in U_{3}$ by (2.13), so

$$
\begin{equation*}
a_{5}^{u_{8} a_{0}}=a_{5}^{m v_{8}^{-1}} \in U_{[3,7]} \tag{4.44}
\end{equation*}
$$

by Proposition 2.6(i). By Proposition 4.40, $a_{5}^{u_{8}}=a_{5} a_{6}$ for some $a_{6} \in\left\langle V_{6}^{\sharp}\right\rangle$, so

$$
a_{5}^{u_{8} a_{0}}=\left(a_{5} a_{6}\right)^{a_{0}}=\left[a_{0}, a_{5}\right] \cdot a_{5} \cdot\left[a_{0}, a_{6}\right] \cdot a_{6}=a_{1} a_{2} a_{5} \cdot\left[a_{0}, a_{6}\right] \cdot a_{6}
$$

By Corollary 4.31, $\left[a_{0}, a_{6}\right] \in\left\langle V_{2}^{\sharp}\right\rangle U_{[3,5]}$. Thus $a_{5}^{u_{8} a_{0}} \in a_{1} a_{2}\left\langle V_{2}^{\sharp}\right\rangle U_{[3,6]}$. Hence

$$
a_{5}^{u_{8} a_{0}} \in U_{[3,7]} \cap a_{1} a_{2}\left\langle V_{2}^{\sharp}\right\rangle U_{[3,6]}
$$

by (4.44). By Proposition 2.6(ii), therefore, $a_{1}=1$ and $a_{2} \in\left\langle V_{2}^{\#}\right\rangle$.
Proposition 4.45. Let $a_{4} \in U_{4}$ and suppose that $\left[a_{1}, a_{4}\right]=1$ for some $a_{1} \in U_{1}^{\sharp}$, Then $\left[a_{4}, v_{9}\right] \in U_{5} a_{4}^{m}$, where $v_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and $m=\mu_{\gamma}\left(a_{1}\right)$.
Proof. Let $a_{6}=a_{4}^{m}$. Then $a_{6} \in U_{6}$ by (2.13), $m=\mu_{\gamma}\left(v_{9}\right)$ by Proposition 2.14(ii), $a_{1}=\kappa_{\gamma}\left(v_{9}\right)$ by Proposition 2.14(iv) and $\kappa_{\gamma}\left(v_{9}\right)=\lambda_{\gamma}\left(v_{9}\right)$ by Proposition 4.27(iii). Thus $m=a_{1} v_{9} a_{1}$. We have $a_{4}^{m a_{1}} \in U_{[2,5]} a_{6}$ and $a_{4}^{a_{1} v_{9}}=$ $a_{4}^{v_{9}} \in a_{4} U_{[5,8]}$ by Proposition 2.6(i). Since $m a_{1}=a_{1} v_{9}$, it follows that $a_{4}^{v_{9}} \in$ $a_{4} U_{[5,8]} \cap U_{[2,5]} a_{6}$. By Proposition 2.6(ii), therefore, $a_{4}^{v_{9}} \in a_{4} U_{5} a_{6}$. Thus $\left[a_{4}, v_{9}\right] \in U_{5} a_{6}=U_{5} a_{4}^{m}$.
Proposition 4.46. Let $a_{4} \in U_{4}^{\sharp}$ and suppose that $\left[a_{1}, a_{4}\right]=1$ for some $a_{1} \in U_{1}^{\sharp}$. Then $a_{4} \in V_{4}$.
Proof. Let $v_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and $m=\mu_{\gamma}\left(a_{1}\right)$. By Proposition 4.45, $\left[a_{4}, v_{9}\right] \in U_{5} a_{4}^{m}$. We have $a_{4}^{m} \in U_{6}$. By Proposition 2.6(ii) and Proposition 4.43, therefore, $a_{4}^{m} \in V_{6}$. Hence $a_{4} \in V_{4}$.

Proposition 4.47. Suppose that $\left[a_{0}, a_{5}\right]=a_{1} a_{2}$ and $a_{i} \in U_{i}$ for $i=0,1,2$ and 5. Then $a_{1}=1$.
Proof. The subgroup V_{4} is normal in $U_{[0,5]}$. By Conventions 1.3(i), Proposition 2.6(i), Proposition 4.17 and Proposition 4.40, we have

$$
\left[\left[U_{0}, U_{4}\right], U_{5}\right] \subset\left[U_{[1,3]}, U_{5}\right] \subset V_{4}
$$

Since $\left[U_{4}, U_{5}\right]=1$, it follows by $[7,2.3]$ applied to the quotient group $U_{[0,5]} / V_{4}$ that $\left[\left[U_{0}, U_{5}\right], U_{4}\right] \subset V_{4}$. Thus $\left[a_{1} a_{2}, U_{4}\right] \subset V_{4}$. Choose $b_{4} \in U_{4}$. By Conventions 1.3(i), we have $\left[a_{1} a_{2}, b_{4}\right]=\left[a_{1}, b_{4}\right]^{a_{2}} \cdot\left[a_{2}, b_{4}\right]$. By Proposition 4.40, $\left[a_{1}, b_{4}\right]^{a_{2}} \in V_{2}$ and by Proposition 2.6(i), $\left[a_{2}, b_{4}\right] \in U_{3}$. By Proposition 2.6(ii), therefore, $\left[a_{1}, b_{4}\right]=1$. Since b_{4} is arbitrary, it follows that $a_{1} \in C_{U_{1}}\left(U_{4}\right)$. By Proposition 4.15(ii), on the other hand, $U_{4}^{\sharp} \not \subset V_{4}$, so by Proposition 4.46, $C_{U_{1}^{\sharp}}\left(U_{4}\right)=\emptyset$. Since X is sharp, it follows that $C_{U_{1}}\left(U_{4}\right)=1$. Thus $a_{1}=1$.

Proposition 4.48. Let $a_{0} \in U_{0}$. If $\left[a_{0}, a_{5}\right] \in U_{[1,2]}$ for some $a_{5} \in U_{5}$, then $\left[a_{0}, a_{5}\right] \in\left\langle V_{2}^{\sharp}\right\rangle$.

Proof. Suppose that $\left[a_{0}, a_{5}\right]=a_{1} a_{2}$ with $a_{i} \in U_{i}$ for $i=0,1,2$ and 5. By Proposition 4.47, we have $a_{1}=1$. Choose $b_{7} \in U_{7}^{\sharp}$. By Proposition 2.6(i), a_{0} normalizes $U_{[1,6]}$ and hence $a_{0}^{b_{7}}=f a_{0}$ for some $f \in U_{[1,6]}$. Again by Proposition 2.6(i), U_{2} normalizes $U_{[3,6]}$ and hence $f=e b_{2}$ for some $b_{2} \in U_{2}$ and some $e \in U_{1} U_{[3,6]}$. By Corollary 4.13, U_{5} is abelian. By Proposition 2.6(i) and Proposition 4.17, therefore, $\left[e, a_{5}\right]=1$ and thus

$$
\begin{equation*}
a_{2}^{b_{7}}=\left[a_{0}, a_{5}\right]^{b_{7}}=\left[a_{0}^{b_{7}}, a_{5}^{b_{7}}\right]=\left[e b_{2} a_{0}, a_{5}\right]=\left[b_{2} a_{0}, a_{5}\right] \tag{4.49}
\end{equation*}
$$

by Conventions 1.3(i). By Conventions 1.3(i) and Proposition 4.40, we have $\left[b_{2} a_{0}, a_{5}\right]=d_{4} \cdot\left[a_{0}, a_{5}\right]=d_{4} a_{2}=a_{2} d_{4}$ for some d_{4} in $\left\langle V_{4}^{\sharp}\right\rangle$. By (4.49), therefore, we have $\left[a_{2}, b_{7}\right]=d_{4}$. Let $d_{2}=d_{4}^{\mu_{\gamma}\left(b_{7}\right)}$. By (2.13), $d_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$ and by 4.6, $\left[d_{2}, b_{7}\right]=d_{4}$. Thus $\left[a_{2} d_{2}, b_{7}\right]=1$ by Conventions 1.3(i) and Proposition 4.27(i). Therefore

$$
a_{2} b_{2} \in U_{2} \cap U_{2}^{b_{7}} \subset G_{w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{6}^{\prime}, w_{5}^{\prime}, w_{4}^{\prime}}^{(1)}
$$

where $w_{i}^{\prime}=w_{i}^{b_{7}}$ for all i. The path $\left(w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{6}^{\prime}, w_{5}^{\prime}, w_{4}^{\prime}\right)$ is straight and of length 8 . Thus $\alpha:=\left(w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{6}^{\prime}, w_{5}^{\prime}, w_{4}^{\prime}\right)$ is a root and

$$
U_{\alpha}=G_{w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{6}^{\prime}, w_{5}^{\prime}}^{(1)}
$$

By Proposition 2.9, therefore, $a_{2} d_{2}=1$. Hence $a_{2} \in\left\langle V_{2}^{\sharp}\right\rangle$.
Proposition 4.50. Let $a_{4} \in U_{4}$. If $\left[a_{1}, a_{4}\right]=1$ for some $a_{1} \in U_{1}^{\sharp}$, then $a_{4} \in V_{4}$.
Proof. Let $v_{9}=\lambda_{\gamma}\left(a_{1}\right)$ and $m=\mu_{\gamma}\left(a_{1}\right)$. By Proposition 4.45, $\left[a_{4}, v_{9}\right] \in U_{5} a_{4}^{m}$. We have $a_{4}^{m} \in U_{6}$. By Proposition 2.6(ii) and Proposition 4.48, it follows that $a_{4}^{m} \in V_{6}$. Hence $a_{4} \in V_{4}$.

Proposition 4.51. Let $e_{1} \in U_{1}^{\sharp}$ and $a_{6} \in V_{6}^{\sharp}$. Then

$$
V_{6}^{\sharp}=\left\{a_{6}^{\mu_{\gamma}\left(e_{1}\right) \mu_{\gamma}\left(a_{1}\right)} \mid a_{1} \in U_{1}^{\sharp}\right\} .
$$

Proof. Let $a_{4}=a_{6}^{\mu_{\gamma}\left(e_{1}\right)}$ and choose $b_{6} \in V_{6}^{\sharp}$. By Proposition 4.36, there exists $a_{1} \in U_{1}^{*}$ such that $\left[a_{1}, b_{6}\right]=a_{4}$. By Proposition $4.39, a_{1} \in U_{1}^{\sharp}$. Thus $a_{6}^{\mu_{\gamma}\left(e_{1}\right) \mu_{\gamma}\left(a_{1}\right)}=b_{6}$ by Proposition 4.6.

Let $W_{i}=\lambda_{\gamma}\left(V_{i-8}^{\sharp}\right)$ for all even i.
Proposition 4.52. $W_{i} \subset U_{i}^{\sharp}$ for all even i.
Proof. This holds by Proposition 2.11.
Proposition 4.53. $U_{8}=V_{8} \cdot\left\langle W_{8}\right\rangle$.
Proof. Choose $a_{5} \in U_{5}^{\sharp}$ and $a_{8} \in U_{8}$. By Proposition 4.40, $\left[a_{5}, a_{8}\right] \in\left\langle V_{6}^{\sharp}\right\rangle$. By Proposition $4.15(\mathrm{ii}),\left[a_{5}, W_{8}\right]$ contains elements of V_{6}^{\sharp}. The product $\mu_{\gamma}\left(e_{1}\right)$ $\mu_{\gamma}\left(a_{1}\right)$ for $e_{1}, a_{1} \in U_{1}^{\sharp}$ normalizes W_{8} and by Proposition 4.17, it centralizes U_{5}. By Proposition 4.51, therefore, $V_{6}^{\sharp} \subset\left[a_{5}, W_{8}\right]$. Therefore $\left\langle V_{6}^{\sharp}\right\rangle \subset\left[a_{5},\left\langle W_{8}\right\rangle\right]$. Thus there exists $b \in\left\langle W_{8}\right\rangle$ such that $\left[a_{5}, a_{8}\right]=\left[a_{5}, b\right]$. Hence $\left[a_{5}, a_{8} b^{-1}\right]=1$. By 4.50, we conclude that $a_{8} b^{-1} \in V_{8}$.
Proposition 4.54. $\left[U_{4}, U_{8}\right]=1$.
Proof. This holds by Proposition 4.28 and Proposition 4.53.
Proposition 4.55. $\left[H_{1} H_{7}, H_{8}\right]=1$, where H_{i} for all i is as in Proposition 2.24.

Proof. By Proposition 4.17, H_{1} centralizes U_{5} and H_{7} centralizes U_{3}. By Proposition 4.54, H_{8} centralizes U_{4}. Thus $\left[H_{1}, H_{8}\right] \subset C_{H}\left(\left\langle U_{4}, U_{5}\right\rangle\right)$ and $\left[H_{7}, H_{8}\right] \subset$ $C_{H}\left(\left\langle U_{3}, U_{4}\right\rangle\right)$. Thus $\left[H_{1}, H_{8}\right]=\left[H_{7}, H_{8}\right]=1$ by Proposition 2.16.

Proposition 4.56. Let \hat{X} be as in Proposition 4.20. Then \hat{X} is Moufang and $U_{i}^{\sharp}=U_{i}^{*}$ for all odd i.
Proof. Let H^{\dagger} be as in Proposition 2.23. We have $H_{1} H_{7} \subset H^{\dagger}$ and by Proposition 2.24, $H^{\dagger}=H_{1} H_{8}$. By Proposition 2.24 and Proposition 4.21, we have $\varphi\left(\hat{U}_{i}^{\sharp}\right)=\hat{U}_{(i+1) / 2}^{\sharp}$ for all odd i and $\hat{H}^{\dagger}=\varphi\left(H_{1} H_{7}\right)$, where φ is as in Proposition 4.20 and \hat{H}^{\dagger} is as in Proposition 2.23 applied to \hat{X}. Since X is dagger-sharp, every non-trivial H^{\dagger}-invariant subgroup of U_{i} for i odd contains elements of U_{i}^{\sharp}. Hence every non-trivial $\varphi\left(H^{\dagger}\right)$-invariant subgroup of \hat{U}_{i} for arbitrary i contains elements of \hat{U}_{i}^{\sharp}. By Proposition 4.25 and Proposition 4.55 , therefore, we can apply Theorem 3.1 with $J=\varphi\left(H_{8}\right)$. Thus \hat{X} is Moufang. The second claim holds, therefore, by Proposition 4.22.
Proposition 4.57. Let $e_{1} \in U_{1}^{\sharp}$ and $a_{6} \in V_{6}^{\sharp}$. Then

$$
\left\langle V_{6}^{\sharp}\right\rangle^{*}=\left\{a_{6}^{\mu_{\gamma}\left(a_{1}\right) \mu_{\gamma}\left(e_{1}\right)} \mid a_{1} \in U_{1}^{\sharp}\right\} .
$$

Proof. Choose $b_{6} \in\left\langle V_{6}^{\sharp}\right\rangle^{*}$ and let $b_{4}=b_{6}^{\mu_{\gamma}\left(e_{1}\right)}$. By (2.13), $b_{4} \in\left\langle V_{4}^{\sharp}\right\rangle^{*}$ and by 4.36, there exists $a_{1} \in U_{1}^{*}$ such that $\left[a_{1}, a_{6}\right]=b_{4}$. By Proposition 4.56, $a_{1} \in U_{1}^{\sharp}$. Thus $b_{6}^{\mu_{\gamma}\left(e_{1}\right) \mu_{\gamma}\left(a_{1}\right)}=a_{6}$ by Proposition 4.6.

Corollary 4.58. $\left\langle V_{i}^{\sharp}\right\rangle^{*}=V_{i}^{\sharp}$ for all even i.
Proof. This holds by Proposition 4.57.
Proposition 4.59. $U_{8}=V_{8} \cup V_{8} W_{8}$.
Proof. Choose $a_{5} \in U_{5}^{\sharp}$ and $a_{8} \in U_{8}$. By Proposition 4.40, $\left[a_{5}, a_{8}\right] \in\left\langle V_{6}^{\sharp}\right\rangle$. By Proposition 4.15(ii), $\left[a_{5}, W_{8}\right]$ contains elements of V_{6}^{\sharp}. The product $\mu_{\gamma}\left(a_{1}\right)$ $\mu_{\gamma}\left(e_{1}\right)$ for $e_{1}, a_{1} \in U_{1}^{\sharp}$ normalizes W_{8} and by Proposition 4.17, it centralizes U_{5}. By Proposition 4.57 and Corollary 4.58, therefore, $\left\langle V_{6}^{\sharp}\right\rangle^{*} \subset\left[a_{5}, W_{8}\right]$. Thus there exists $b \in W_{8} \cup\{1\}$ such that $\left[a_{5}, a_{8}\right]=\left[a_{5}, b\right]$. Hence $\left[a_{5}, a_{8} b^{-1}\right]=1$. By Proposition 4.50, we conclude that $a_{8} b^{-1} \in V_{8}$.
Proposition 4.60. $\left\langle W_{8}\right\rangle \subset\left\langle V_{8}^{\sharp}\right\rangle \cup\left\langle V_{8}^{\sharp}\right\rangle \cdot W_{8}$.
Proof. Choose $a_{3} \in U_{3}^{\sharp}$ and $b_{8} \in\left\langle W_{8}\right\rangle$. By Proposition 4.59, there exists $a_{8} \in V_{8}$ and $w_{8} \in W_{8} \cup\{1\}$ such that $b_{8}=a_{8} w_{8}$. We have

$$
\begin{equation*}
\left[a_{3}, W_{8}\right] \subset U_{[4,5]} \tag{4.61}
\end{equation*}
$$

and $\left[a_{3}, W_{8}^{-1}\right] \subset U_{[4,5]} V_{6}^{\sharp}$ by Proposition 4.33. By Conventions 1.3(ii), Proposition 4.40 and 4.54 , it follows that

$$
\left[a_{3}, b_{8}\right]_{6} \in\left[a_{3},\left\langle W_{8}\right\rangle\right]_{6} \subset\left\langle V_{6}^{\sharp}\right\rangle
$$

By Conventions 1.3(ii), Proposition 4.6 and (4.61), on the other hand, we have

$$
\left[a_{3}, b_{8}\right]=\left[a_{3}, a_{8} w_{8}\right]=\left[a_{3}, w_{8}\right] \cdot\left[a_{3}, a_{8}\right]^{w_{8}} \in U_{[4,5]} a_{8}^{\mu_{\gamma}\left(a_{3}\right)}
$$

Hence $a_{8} \in\left\langle V_{8}^{\sharp}\right\rangle$.
Corollary 4.62. $\hat{U}_{8}:=\left\langle V_{8}^{\sharp}\right\rangle \cup\left\langle V_{8}^{\sharp}\right\rangle \cdot W_{8}$ is a subgroup of U_{8}.
Proof. Since $V_{8} \subset Z\left(U_{8}\right)$, the product $\left\langle V_{8}^{\sharp}\right\rangle \cdot\left\langle W_{8}\right\rangle$ is a subgroup. This subgroup contains \hat{U}_{8}. By Proposition 4.60, on the other hand, $\left\langle V_{8}^{\sharp}\right\rangle \cdot\left\langle W_{8}\right\rangle \subset \hat{U}_{8}$.

Proposition 4.63. $V_{8} \cap \hat{U}_{8}=\left\langle V_{8}^{\sharp}\right\rangle$, where \hat{U}_{8} is as in Proposition 4.62.
Proof. Let $a_{3} \in U_{3}^{\sharp}, a_{8} \in\left\langle V_{8}^{\sharp}\right\rangle$ and $w_{8} \in W_{8}$. By Conventions 1.3(ii) and Proposition 4.13,

$$
\left[a_{3}, a_{8} w_{8}\right]=\left[a_{3}, w_{8}\right] \cdot\left[a_{3}, a_{8}\right]^{w_{8}} \in\left[a_{3}, w_{8}\right] V_{6} .
$$

By Proposition 4.33, therefore, $\left[a_{3}, a_{8} w_{8}\right]_{4} \neq 1$. Hence $a_{8} w_{8} \notin V_{8}$ by another application of Corollary 4.13.

Proposition 4.64. $V_{8}=\left\langle V_{8}^{\sharp}\right\rangle$.

Proof. Let \hat{U}_{8} be as in Corollary 4.62. By Proposition 4.41 and Proposition 4.59, $U_{8}^{\sharp} \subset \hat{U}_{8}$. By Proposition 2.22 and Corollary 4.62, it follows that $U_{8}=\hat{U}_{8}$. Hence $V_{8}=V_{8} \cap \hat{U}_{8}=\left\langle V_{8}^{\sharp}\right\rangle$ by Proposition 4.63.

Corollary 4.65. $V_{i}^{\sharp}=V_{i}^{*}$.
Proof. This holds by Proposition 4.58 and Proposition 4.64.
We observe now that we can continue to follow the proof of [7, 17.7] given in [7, 31.1-31.34] verbatim, starting with [7, 31.22]. The arguments from this point on require only Proposition 4.52, Proposition 4.56, and Corollary 4.65; the equality $U_{i}^{\sharp}=U_{i}^{*}$ for i even is never required. The results [7,31.22-31.34] yield the conclusion that there exist an octagonal set (K, σ), isomorphisms x_{i} from the additive group of K to U_{i} for all odd i, isomorphisms x_{i} from the additive group of K to the center of U_{i} for all even i and and injections y_{i} from the set K to U_{i} for all even i such that $U_{i}=y_{i}(K) x_{i}(K)$ and

$$
\begin{equation*}
y_{i}(s) y_{i}(t)=y_{i}(s+t) x_{i}\left(s^{\sigma} t\right) \tag{4.66}
\end{equation*}
$$

for all $s, t \in K$ and for all even i and all the commutator relations in [7, 16.9] hold.

It is now a lengthy but straightforward calculation to show using (4.66) and the commutator relations in $[7,16.9]$ that

$$
U_{7}^{x_{0}\left(\left(u+v^{\sigma}\right) / R^{\sigma}\right) y_{0}(u / R) x_{8}(t) y_{8}(u)}=U_{1}
$$

for all $s, t \in K$ not both zero, where

$$
R=v^{\sigma+2}+u v+u^{\sigma}
$$

(cf. [7, 10.14 and 32.13]). By Proposition 2.19(ii), therefore, $U_{8}^{*}=U_{8}^{\sharp}$. By Proposition 4.56, it follows that $U_{i}^{*}=U_{i}^{\sharp}$ for all i. Hence by Proposition 2.15, X is Moufang. This concludes the proof of Theorem 1.1.

References

[1] B. Mühlherr and R. M. Weiss, Root graded groups of rank 2, J. Comb. Algebra 3 (2019), no. 2, 189-214. https://doi.org/10.4171/JCA/30
[2] , Tits triangles, Canad. Math. Bull. 62 (2019), no. 3, 583-601. https://doi.org/ 10.4153/S0008439518000140
[3] , Tits Polygons, Mem. A.M.S., to appear.
[4] , The exceptional Tits quadrangles, Transform. Groups, to appear.
[5] J. Tits, Moufang octagons and the Ree groups of type ${ }^{2} F_{4}$, Amer. J. Math. 105 (1983), no. 2, 539-594. https://doi.org/10.2307/2374268
[6] __, Quadrangles de Moufang. I, in Jacques Tits, Collected Works, vol. III, eds. F. Buekenhaut et al., Europ. Math. Soc. Publ. House, Zürich, 2013, pp. 472-487.
[7] J. Tits and R. M. Weiss, Moufang Polygons, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. https://doi.org/10.1007/978-3-662-04689-0

Bernhard Mühlherr
Mathematisches Institut
Universität Giessen
35392 Giessen, Germany
Email address: bernhard.m.muehlherr@math.uni-giessen.de
Richard M. Weiss
Department of Mathematics
Tufts University
Medford, MA 02155, USA
Email address: rweiss@tufts.edu

[^0]: Received January 10, 2020; Revised March 31, 2020; Accepted April 8, 2020.
 2010 Mathematics Subject Classification. 20E42, 51E12, 51E24.
 Key words and phrases. Building, Moufang polygon, Tits polygon, exceptional group. This work was partially supported DFG Grant MU 1281/7-1 and by Simons Foundation Collaboration Grant 516364.

