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DAGGER-SHARP TITS OCTAGONS

Bernhard Mühlherr and Richard M. Weiss

Abstract. The spherical buildings associated with absolutely simple al-

gebraic groups of relative rank 2 are all Moufang polygons. Tits polygons

are a more general class of geometric structures that includes Moufang
polygons as a special case. Dagger-sharp Tits n-gons exist only for n = 3,

4, 6 and 8. Moufang octagons were classified by Tits. We show here that
there are no dagger-sharp Tits octagons that are not Moufang. As part

of the proof it is shown that the same conclusion holds for a certain class

of dagger-sharp Tits quadrangles.

1. Introduction

A generalized polygon is the same thing as an irreducible spherical building
of rank 2. Tits observed that the spherical buildings of rank 2 that arise from
absolutely simple algebraic groups all satisfy a property he called the Moufang
condition. In [5], he classified Moufang octagons. He showed, in particular,
that they all arise as the fixed point building of a polarity of a building of
type F4. Subsequently, the complete classification of Moufang polygons was
given in [7].

The notion of a Tits polygon was introduced in [3]. A Tits polygon is a
bipartite graph Γ in which for each vertex v, the set Γv of vertices adjacent
to v is endowed with a symmetric relation we call “opposite at v” satisfying
certain axioms. A Moufang polygon is the same thing as a Tits polygon all of
whose local opposition relations are trivial.

Let P denote the set of pairs (∆, T ), where ∆ is a spherical building of type
M satisfying the Moufang condition and T is a Tits index of absolute type M
and relative rank 2. Every pair (∆, T ) in P gives rise by a simple construction
to a Tits polygon whose automorphism group is canonically isomorphic to the
automorphism group of ∆ preserving T . We call the Tits polygons that arise
in this way the Tits polygons of index type. Moufang polygons are all Tits
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polygons of index type; this is the case that not just the relative rank but also
the absolute rank of T is 2.

For every irreducible spherical building ∆ of rank at least 2, there exist Tits
indices T such that (∆, T ) ∈ P. Thus the theory of Tits polygons allows us to
regard a spherical building of arbitrary rank at least 2 as a rank 2 structure to
which the methods developed in [7] can be applied.

With a few exceptions, Tits polygons of index type satisfy a condition we
call dagger-sharp. This is a natural condition on the action of the stabilizer of
an apartment on the corresponding root groups. It is trivially satisfied by all
Moufang polygons. Tits n-gons exist for every value of n (as was observed in
[3, 1.2.33]), but by [3, 1.6.14], dagger-sharp Tits n-gons exist only for n = 3, 4,
6 and 8.

Let k be an integer at least 3. We say that a Tits polygon is k-plump if for
each vertex v, the valency |Γv| of v is not too small in an appropriate sense. All
Tits polygons of index type corresponding to a pair (∆, T ) in P are k-plump if
the field of definition of ∆ contains at least k elements (by [3, 1.2.7]).

In [2, 5.11 and 5.12], we showed that all dagger-sharp Tits triangles are of
index type (or a variation defined over a simple associative ring that is infinite
dimensional over its center) and in [1, 7.7], we showed that all dagger-sharp Tits
hexagons are of index type. In [4], we proved a similar (but slightly weaker)
result for the Tits quadrangles of exceptional type.

The main goal of this article is to treat the case n = 8. We prove the
following:

Theorem 1.1. All 9-plump dagger-sharp Tits octagons are Moufang.

Our proof of Theorem 1.1 is a modification of Tits’ classification of Moufang
octagons in [5]. It exploits the existence of a Tits subquadrangle of indifferent
type. To make the proof work, we first have to prove Theorem 3.1, a classifi-
cation result for this class of Tits quadrangles. As a corollary, we obtain the
following:

Theorem 1.2. All 5-plump dagger-sharp indifferent Tits quadrangles are Mou-
fang.

Our proof of Theorem 3.1 is, in turn, a modification of Tits’ unpublished
classification of indifferent Moufang quadrangles which eventually appeared in
[6].

We conjecture that every dagger-sharp Tits polygon is of index type or a
variation involving an associative ring that is infinite dimensional over its center
and/or a module of infinite rank. To complete the proof, it remains only to
finish the case n = 4.

Conventions 1.3. Let G be a group. We denote the set of non-trivial elements
of G by G∗. As in [7], we set ab = b−1ab and

[a, b] = a−1b−1ab
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for all a, b ∈ G. With these definitions, we have

(i) [ab, c] = [a, c]b · [b, c] and
(ii) [a, bc] = [a, c] · [a, b]c

for all a, b, c ∈ G.

2. Tits polygons

Tits polygons were introduced in [3]. In this section, we give the definition
and assemble all the properties of Tits polygons we will need for the proofs of
Theorems 1.1 and 3.1.

Definition 2.1. A dewolla is a triple

X = (Γ,A, {≡v}v∈V ),

where:

(i) Γ is a bipartite graph with vertex set V and |Γv| ≥ 3 for each v ∈ V ,
where Γv denotes the set of vertices adjacent to v.

(ii) For each v ∈ V , ≡v is an anti-reflexive symmetric relation on Γv. We say
that vertices u,w ∈ V are opposite at v if u,w ∈ Γv and u ≡v w. A path
(w0, w1, . . . , wm) in Γ is called straight if wi−1 and wi+1 are opposite at
wi for all i ∈ [1,m− 1].

(iii) There exist n ≥ 3 and a non-empty set A of circuits of length 2n such
that every path contained in a circuit in A is straight.

The parameter n is called the level of X. The automorphism group Aut(X) is
the subgroup of Aut(Γ) consisting of all g ∈ Aut(Γ) such that γg ∈ A for all
γ ∈ A and for all u, v, w ∈ V such that u and w are opposite at v, ug and wg

are opposite at vg. A root of X is a straight path of length n.

Definition 2.2. A Tits n-gon is a dewolla

X = (Γ,A, {≡v}v∈V )

of level n for some n ≥ 3 such that Γ is connected and the following axioms
hold:

(i) For all v ∈ V and all u,w ∈ Γv, there exists z ∈ Γv that is opposite both
u and w at v.

(ii) For each straight path δ = (w0, . . . , wk) of length k ≤ n − 1, δ is the
unique straight path of length at most k from w0 to wk.

(iii) For G = Aut(X) and for each root α = (w0, . . . , wn) of X, the group Uα
acts transitively on the set of vertices opposite wn−1 at wn, where Uα is
the pointwise stabilizer of

Γw1
∪ Γw2

∪ · · · ∪ Γwn−1

in G. The group Uα is called the root group associated with the root α.

A Tits polygon is a Tits n-gon for some n ≥ 3. A Tits n-gon is called a Tits
triangle if n = 3, a Tits quadrangle if n = 4, etc.
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If X = (Γ,A, {≡v}v∈V ) is a Tits n-gon for some n ≥ 3, then by [3, 1.3.12],
A is the set of all circuits in Γ of length at most 2n containing only straight
paths. Thus, in particular, 2n is, roughly speaking, the “straight girth” of Γ.

Notation 2.3. We will say that a Tits n-gon X = (Γ,A, {≡v}v∈V ) is Moufang
if all the relations ≡v are trivial, i.e., if all paths in Γ are straight. If X is
Moufang, then by [3, 1.2.3], Γ is a Moufang n-gon and A is the set of its
apartments. Conversely, if Γ is a Moufang n-gon, A is the set of its apartments
and ≡v is the trivial relation on Γv for every v in the vertex set V , then by
[3, 1.2.2], (Γ,A, {≡v}v∈V ) is a Tits n-gon.

Notation 2.4. Let X = (Γ,A, {≡v}v∈V ) be a Tits n-gon for some n ≥ 3. A
coordinate system for X is a pair (γ, i 7→ wi) where γ is an element of A and
i 7→ wi is a surjection from Z to the vertex set of γ such that wi−1 is adjacent
to wi for each i. For each coordinate system (γ, i 7→ wi), we denote by Ui the
root group associated with the root (wi, wi+1, . . . , wi+n) for each i ∈ Z and call
the map i 7→ Ui the associated root group labeling. Thus wi = wj and Ui = Uj
whenever i and j have the same image in Z2n. For the rest of this section, we
fix a Tits n-gon X = (Γ,A, {≡v}v∈V ) and a coordinate system (γ, i 7→ wi) of
X. Let i 7→ Ui be the corresponding root group labeling and let G = Aut(X).

Proposition 2.5. G acts transitively on the edge set of Γ.

Proof. This holds by [3, 1.3.6]. �

Proposition 2.6. Let

U[k,m] =

{
UkUk+1 · · ·Um if k ≤ m and

1 otherwise.

Then the following hold:

(i) [Ui, Uj ] ⊂ U[i+1,j−1] for all i, j such that i < j < i + n. In particular,
[Ui, Ui+1] = 1 for all i.

(ii) The product map U1 × U2 × · · · × Un → U[1,n] is bijective.

Proof. This holds by [3, 1.3.36(ii) and (iii)]. �

Notation 2.7. For each path (x0, . . . , xm), we denote by G
(1)
x1,...,xm−1 the point-

wise stabilizer of Γx1
∪ · · · ∪ Γxm−1

. Thus, in particular, Ui = G
(1)
wi+1,...,wi+n−1

for all i and for each vertex v, G
(1)
v is the kernel of the action of the stabilizer

Gv on Γv.

Proposition 2.8. G
(1)
wi+1,wi+2,...wi+k−1 = U[i+k−n,i] for all i and all k such that

3 ≤ k ≤ n.

Proof. This holds by [3, 1.3.27]. �

Proposition 2.9. Let α = (v0, . . . , vn) be a root. Then Uα acts sharply tran-
sitively on the set of vertices that are opposite vn−1 at vn.
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Proof. This holds by [3, 1.3.25]. �

Notation 2.10. Let

U ]i = {a ∈ Ui | wai+n+1 is opposite wi+n+1 at wi+n}

for each i. By [3, 1.4.3], we have U ]i 6= ∅ and by [3, 1.4.8], we have

U ]i = {a ∈ Ui | wai−1 is opposite wi−1 at wi}
for each i.

Proposition 2.11. For each i ∈ Z, there exist unique maps κγ and λγ from

U ]i to U ]i+n such that for each a ∈ U ]i , the product

(2.12) µγ(a) := κγ(a) · a · λγ(a)

interchanges the vertices wi+n−1 and wi+n+1. For each a ∈ U ]i , the element
µγ(a) fixes the vertices wi and wi+n and interchanges the vertices wi+j and
wi−j for all j ∈ Z and

(2.13) U
µγ(a)
k = U2i+n−k

for all k ∈ Z.

Proof. This holds by [3, 1.4.4] and [3, 1.4.9(i)]. �

Proposition 2.14. Let a ∈ U ]i for some i. Then the following hold:

(i) a−1 ∈ U ]i , µγ(a−1) = µγ(a)−1, κγ(a−1) = λγ(a)−1 and λγ(a−1) =
κγ(a)−1.

(ii) m = µγ(κγ(a)) = µγ(λγ(a)).
(iii) µγ(ag) = µγ(a)g for all g mapping γ to itself.
(iv) κγ(λγ(a)) = λγ(κγ(a)) = a.

Proof. This holds by [3, 1.4.3, 1.4.9(ii) and 1.4.13] and the third display in the
proof of [3, 1.4.9]. �

Proposition 2.15. Suppose that U∗i = U ]i for i = 1 and n. Then X is
Moufang.

Proof. By [3, 1.4.15], the relation ≡v is trivial for v = wn+1 and v = w2n = w0.
By [3, 1.3.20], it follows that the relation ≡w1

is also trivial. By Proposition
2.5, every vertex is in the same G-orbit as w0 or w1. Thus the relation ≡v is
trivial for all vertices v. By Notation 2.3, therefore, X is Moufang. �

Proposition 2.16. CH(〈Ui, Ui+1〉) = CH(〈Ui, Ui+n〉) = 1 for all i, where H
denotes the pointwise stabilizer of γ in G = Aut(X).

Proof. This holds by [3, 1.4.19(ii)]. �

Proposition 2.17. w
UiUi+n
i−1 = Γwi = w

Ui+nUi
i+1 for each i.

Proof. This holds by [3, 1.3.4]. �
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Proposition 2.18. Suppose that [a1, a
−1
n ] = a2 · · · an−1 with ai ∈ Ui for each

i ∈ [1, n]. Then the following hold:

(i) If a1 ∈ U ]1, then a2 = a
µγ(a1)
n and [a2, λγ(a1)−1] = a3 · · · an−1an.

(ii) If an ∈ U ]n, then a1 = a
µγ(an)
n−1 and [κγ(an), a−1n−1] = a1a2 · · · an−2.

Proof. This holds by [3, 1.4.16]. �

Proposition 2.19. The following hold:

(i) If a ∈ U1 and Uabn = U2 for some b ∈ Un+1, then a ∈ U ]1 and b = λγ(a)
(ii) If a ∈ Un and Uab1 = Un−1 for some b ∈ U0, then a ∈ U ]n and b = λγ(a).

Proof. This holds by [3, 1.4.27]. �

Remark 2.20. Both Propositions 2.18 and 2.19 remain valid if all the subscripts
are shifted by a fixed amount. We have formulated both results for fixed values
of the indices only for the sake of clarity.

Definition 2.21. Let k ≥ 3. As in [3, 1.4.21], we call X k-plump if for all
v ∈ V , and for every subset N of Γv of cardinality at most k, there exists a
vertex that is opposite u at v for all u ∈ N . Thus k-plump implies (k − 1)-
plump, and “2-plump” is simply Definition 2.2(i).

Proposition 2.22. If X is 3-plump, then for all i, Ui is generated by U ]i .

Proof. This holds by [3, 1.4.23]. �

Notation 2.23. Let G† denote the subgroup of G generated by all the root
groups of X, let H be as in Proposition 2.16 and let H† = H ∩G†.
Proposition 2.24. Let Hi = 〈mm′ | m,m′ ∈ µγ(U ]i )〉 for all i and let H†

be as in Notation 2.23. Then H1 and Hn normalize each other and if X is
(n+ 1)-plump, then H† = H1Hn.

Proof. The first claim holds by Proposition 2.14(iii) and the second claim by
[3, 1.5.28]. �

Notation 2.25. Let H and H† be as in Notation 2.23. The subgroup H
normalizes Ui for each i. We say that X is sharp if for each i, every nontriv-

ial HUi-invariant subgroup of Ui contains elements of U ]i , where U ]i is as in
Notation 2.10. We say that X is dagger-sharp if for each i, every nontrivial

H†Ui-invariant subgroup of Ui contains elements of U ]i . Note that dagger-
sharp implies sharp. Note, too, that by [3, 1.3.13 and 1.3.40], the definitions of
sharp and dagger-sharp do not depend on the choice of the coordinate system
(γ, i 7→ wi) in Notation 2.4.

Remark 2.26. Let H and H† be as in Notation 2.23. By [7, 1.3.13], every
root group of X is conjugate in G to U1 or Un. To show that X is sharp
(respectively, dagger-sharp), it thus suffices to show that every nontrivial HUi-

invariant (respectively, H†Ui-invariant) subgroup of Ui contains elements of U ]i
for i = 1 and n.
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Proposition 2.27. Suppose that X is sharp and Ui is abelian for some i.
Then NUi+n(Ui) = 1.

Proof. Let Y = NUi+n(Ui) and let H be as in Proposition 2.16. Suppose that
Y 6= 1. The subgroup Y is normalized by H. By (2.13) with k = i, Ui+n is
conjugate to Ui in G. Hence Ui+n is abelian. Since X is sharp, it follows that

there exists d ∈ Y ∩ U ]i+n. Let m = µγ(d). By (2.12), d = emf for some
e, f ∈ Ui. Thus

Ui = Uf
−1

i = (Udi )f
−1

= Uemi = Umi = Ui+8.

The group Ui fixes wi+1, however, but the subgroup Ui+8 does not. With this
contradiction, we conclude that Y = 1. �

Proposition 2.28. Suppose that X is sharp and that β = (v0, v1, . . . , vn) is a
root such that v0 = wi, vn = wi+n and Uβ = Ui for some i. Suppose, too that
Ui is abelian. Then β = (wi, wi+1, . . . , wi+n).

Proof. For each z ∈ Γwi , let opp(z) denote the set of vertices in Γwi that
are opposite z at wi. By Definition 2.2(iii), Ui acts transitively on opp(wi+1)
and Uβ acts transitively on opp(v1). By Definition 2.2(i), we can choose z ∈
opp(wi+1)∩opp(v1). Since Ui = Uβ , it follows that both opp(wi+1) and opp(v1)
are equal to the Ui-orbit containing z. Hence opp(wi+1) = opp(v1). In particu-
lar, wi−1 ∈ opp(v1). By Definition 2.2(iii), therefore, Ui+n contains an element
d mapping v1 to wi+1. The subgroup Ui+n fixes wi = v0 and wi+n = vn. Thus
by Definition 2.2(ii), d maps β to (wi, wi+1, . . . , wi+n). Hence d normalizes Ui.
By Proposition 2.27, d = 1 and thus β = (wi, wi+1, . . . , wi+n). �

Notation 2.29. Suppose that i < j < i+n and that [ai, aj ] = ai+1ai+2 · · · aj−1
with ak ∈ Uk for all k ∈ [i, j]. It follows from Proposition 2.6(ii) that for each
k ∈ [i+ 1, j − 1], ak is uniquely determined by [ai, aj ]. We denote this element
ak by [ai, aj ]k.

Definition 2.30. Suppose that n = 4. We say that X is indifferent if

[U1, U3] = [U2, U4] = 1.

By [3, 1.3.13 and 1.3.40], this definition does not depend on the choice of the
coordinate system (γ, i 7→ wi) in Notation 2.4.

Proposition 2.31. Suppose that n = 4 and that X is indifferent. Then Ui is
abelian for all i.

Proof. We first assume that i = 2. Let a2 ∈ U2. Choose a1 ∈ U ]1 and let

a4 = a
µγ(a1)

−1

2 . By Proposition 2.18(i), [a1, a
−1
4 ] = a2a3 for some a3 ∈ U3.

Since [Ui, U2] = 1 for i = 1, 3 and 4, it follows that [a2, U2] = 1. Thus U2 is
abelian. By Remark 2.20, in fact, Ui is abelian for all i. �
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Proposition 2.32. Suppose that n = 4 and that X is indifferent. Let b1 ∈ U1

and b4 ∈ U4. Then the maps a1 7→ [a1, b4] and a4 7→ [b1, a4] are homomor-
phisms.

Proof. This holds by Conventions 1.3(i) and (ii). �

Notation 2.33. Suppose that n = 8. For each vertex z and each integer k ≥ 2,

let G
(k)
z denote the intersection of G

(1)
v1,...,vk−1 (as defined in Notation 2.7) for

all straight k-paths (v0, v1, . . . , vk) with z = v0. We set

Vi = Z(U[i−4,i+4]) ∩G(4)
wi+4

for all i, where U[i−4,i+4] is as in Notation 2.6. Thus, in particular, Vi ⊂ Ui for
all i.

Proposition 2.34. Suppose that n = 8 and X is sharp as defined in Notation
2.25 and let Vi be as Notation 2.33. Then Vi 6= 1 for all even i or for all odd i.

Proof. Let G be as in Notation 2.23. By [3, 1.3.7 and 1.3.13], wi lies in the
same G-orbit as wj if i− j is even and every vertex of Γ is in the same G-orbit
as w0 or w1. The claim holds, therefore, by [3, 1.3.36(i) and 1.6.18]. �

3. Quadrangles

The main result in this section is the following:

Theorem 3.1. Let X be a Tits quadrangle that is indifferent and 5-plump as
defined in Definitions 2.21 and 2.30. Let (γ, i 7→ wi) and i 7→ Ui be as in

Notation 2.4, let U ]i for all i be as in Proposition 2.11 and let H and H† be as
in Notation 2.23. Suppose that J is a subgroup of H such that [J,H†] = 1 and

that for each i, every JH†-invariant subgroup of Ui contains elements of U ]i .
Then X is Moufang.

It follows by Notation 2.25 and Proposition 2.31 that Theorem 1.2 is the
special case of Theorem 3.1 where J = 1. Before we begin the proof of Theorem
3.1, we prove a preliminary result which (like Theorem 3.1 itself) we will need
in the proof of Theorem 1.1:

Proposition 3.2. Let X be a 3-plump indifferent Tits quadrangle, let (γ, i 7→
wi), i 7→ Ui and U ]i for all i be as in Theorem 3.1. Suppose that the normalizer
NUi(U[i+2,i+3]) is trivial for all i. Then a2 = 1, µγ(b)2 = 1 and λγ(b) = κγ(b)

for all i, all a ∈ Ui and all b ∈ U ]i .

Proof. Suppose X satisfies the hypotheses of Proposition 3.2. We proceed with
the proof of Proposition 3.2 in a series of steps.

Proposition 3.3. For each i, the map ai 7→ µγ(ai) from U ]i to G is injective,
where µγ is as in (2.12).
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Proof. It suffices to assume that i = 1. Let a1, b1 ∈ U ]1 and suppose that
µγ(a1) = µγ(b1). Choose a4 ∈ U4. Applying the notation in Notation 2.29, we
have

[a1, a
−1
4 ]2 = a

µγ(a1)
4 = a

µγ(b1)
4 = [b1, a

−1
4 ]2

by Proposition 2.18(i). By Proposition 2.32, therefore, [a1b
−1
1 , a4]2 = 1. Since

a4 is arbitrary, it follows by Proposition 2.6(i) that a1b
−1
1 ∈ NU1(U[3,4]). By

hypothesis, therefore, a1 = b1. �

Proposition 3.4. κγ(ai) = a
µγ(ai)
i = λγ(ai) for all i and all ai ∈ U ]i , where

κγ and λγ are as in (2.12).

Proof. Let ai ∈ U ]i for some i and let m = µγ(ai). Then κγ(ai) ∈ Ui+n,
λγ(ai) ∈ Ui+n and by (2.13), also ami ∈ Ui+n. By Proposition 2.14(ii) and
(iii), we have µγ(ami ) = mm = m = µγ(κγ(ai)) = µγ(λγ(ai)). The claim holds,
therefore, by Proposition 3.3. �

Proposition 3.5. The elements of U ]i are all of order 2 for all i.

Proof. It suffices to assume that i = 2. Choose a1 ∈ U ]1 and a2 ∈ U ]2 and

let a4 = a
µγ(a1)

−1

2 . Then a4 ∈ U ]4 and [a1, a
−1
4 ] = a2a3 for some a3 ∈ U3

by Proposition 2.18(i). Hence [a1, a4] = a−12 a−13 by Proposition 2.32. Let

a0 = a
µγ(a4)
4 . By Proposition 3.4, µγ(a4) = a0a4a0 and a0 = κγ(a4). By

Proposition 2.18(ii), therefore, [a0, a
−1
3 ] = a1a2. Hence [a0, a3] = a−11 a−12 by

Proposition 2.32. By Conventions 1.3 and Proposition 2.6(i), we have

aa0a4a01 = aa4a01 =
(
a1 · [a1, a4]

)a0
= (a1a

−1
2 a−13 )a0 = a1a

−1
2 · [a0, a3] · a−13 = a−22 a−13 .

By (2.13), we have a
µγ(a4)
1 ∈ U3. Hence by Proposition 2.6(ii), a22 = 1. Thus

the elements of U ]2 are all of order 2. By Proposition 2.14(i), therefore, the

elements of µγ(U ]2) are all of order 2. �

Corollary 3.6. The elements of µγ(U ]i ) are all of order 2 for all i.

Proof. This holds by Proposition 2.14(i) and Proposition 3.5. �

Corollary 3.7. Ui is of exponent 2 for all i.

Proof. This holds by Propositions 2.22, 2.31 and 3.5. �

With Proposition 3.4, Proposition 3.6 and Corollary 3.7, the proof of Proposi-
tion 3.2 is complete. �

We use the rest of this section to prove Theorem 3.1. Suppose that X
satisfies the hypotheses of Theorem 3.1. Again we proceed in a series of steps.

Proposition 3.8. NUi(U[i+2,i+3]) = 1 for all i and the assertions in Proposi-
tion 3.4 and Corollary 3.7 hold.
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Proof. It suffices to assume that i = 1. Let b4 ∈ U∗4 . If c1 ∈ U ]1 , then
[c1, b

−1
4 ]2 6= 1 by Proposition 2.18(i) and hence c1 6∈ NU1

(U[3,4]). Since X is
sharp and the group NU1(U[3,4]) is HU1-invariant, it follows that NU1(U[3,4]) =
1. By Proposition 3.2, therefore, the assertions in Proposition 3.4 and Corollary
3.7 hold. �

Proposition 3.9. H† is an abelian group.

Proof. Let Hi for all i be as in Proposition 2.24. Then H1 centralizes U3 and
H4 centralizes U2. Thus [H1, H4] ⊂ CH(〈U2, U3〉) and hence [H1, H4] = 1

by Proposition 2.16. Now choose m ∈ µγ(U ]4) and h, h′ ∈ H1. We have
Hm

1 = H3 by (2.13) and m acts trivially on U2. Thus [h, h′] induces the same
permutation as [hm, h′] on U2. Since [hm, h′] ∈ [H3, H1] = 1, we conclude
that [h, h′] ∈ CH(U2). Since h, h′ ∈ CH(U3), if follows by Proposition 2.16

that [h, h′] = 1. Thus H1 is abelian. Choosing m ∈ µγ(U ]1) and h, h′ ∈ H4,
we conclude that [h, h′] = 1 by a similar argument. Thus also H4 is abelian.
Since [H1, H4] = 1, therefore, the product H1H4 is an abelian group. Hence
by Proposition 2.24, H† is abelian. �

Proposition 3.10. Let Hi for all i be as in Proposition 2.24, let h ∈ Hi and

m = µγ(ai) for some i and some ai ∈ U ]i . Then hm = h−1.

Proof. It suffices to assume that i = 1. We have

H1 = 〈mµγ(b1) | b1 ∈ U ]1〉.

By Corollary 3.6, hm = h−1 for h = mµγ(b1) for all b1 ∈ U ]1 . The claim holds,
therefore, by Proposition 3.9. �

Proposition 3.11. Let ei ∈ U ]i and mi = µγ(ei) for i = 1 and 4 and let
N = 〈m1,m4〉. Let

e1+2i = e
(m4m1)

i

1 and e4+2i = e
(m4m1)

i

4

for all i. Then N is a dihedral group of order 8 and for all i, ei = ei+8, ei ∈ U ]i ,
eni = ej if Uni = Uj for some n ∈ N , µγ(ei) = µγ(ei+4) ∈ N and the normalizer
of Ui in N centralizes Ui.

Proof. By (2.13), we have ei ∈ U ]i for all i. By Proposition 2.14(iii), it follows
from m1,m4 ∈ N that µγ(ei) ∈ N for all i. We have m1 ∈ 〈U1, U5〉. Applying
(2.13) and Proposition 2.14(iii) again, we thus have mm4

1 ∈ 〈U3, U7〉. Hence
[m1,m

m4
1 ] = 1. By Corollary 3.6, therefore, (m4m1)2 = (m1m4)2 and N is

a dihedral group of order 8. It follows that for all i, ei = ei+8 and eni = ej
if Uni = Uj for some n ∈ N . Thus, in particular, emii = ei+4 and hence
µγ(ei) = µγ(ei)

mi = µγ(emii ) = µγ(ei+4) for all i by Proposition 2.14(iii). The
normalizer of Ui in N is 〈µγ(ei+2)〉 for all i. Since [Ui, µγ(ei+2)] = 1 for all i,
the last claim holds. �



DAGGER-SHARP TITS OCTAGONS 183

Notation 3.12. Let Hi for all i be as in Proposition 2.24. For each i, let Li
denote the image of Hi+1 in Aut(Ui) and let Ki denote the subring of End(Ui)
generated by Li. The elements of Li are units of Ki. By Proposition 3.9, the
ring Ki is commutative and by Corollary 3.7 (and Corollary 3.8), 2 = 0 in Ki.

Let m ∈ µγ(U ]i+2) for some i. Since Hm
i+1 = Hi−1 and m centralizes Ui, Li is

also the image of Hi−1 in Aut(Ui).

Proposition 3.13. Let N be as in Proposition 3.11 and suppose that Uni = Uj
for some n ∈ N and some i, j. Then conjugation by n induces isomorphisms
from Li to Lj and from Ki to Kj that depend on i and j but not on n.

Proof. This holds by the last assertion in Proposition 3.11. �

Notation 3.14. By Proposition 3.13, we can use N to identify Li with Lj and
Ki with Kj whenever i−j is even. We denote by ϕi the natural homomorphism
from Hi to Li−1 for each i. By Proposition 3.13, Li−1 = Li+1 and if Uj = Uni
for some n ∈ N , then

(3.15) ϕj(h
n) = ϕi(h)

for all h ∈ Hi.

Notation 3.16. Let ei be as in Proposition 3.11 for all i. For all i and all
ai ∈ Ui, let ρi,ai denote the element of Aut(Ui+1) given by

ρi,ai(ai+1) = [ai, a
µγ(ei)
i+1 ]i+1

for all ai+1 ∈ Ui+1. If ai ∈ U ]i for some i, then by Proposition 2.18(i),

ρi,ai(ai+1) = a
µγ(ei)µγ(ai)
i+1

for all ai+1 and hence

(3.17) ρi,ai = ϕi
(
µγ(ei)µγ(ai)

)
∈ Li+1.

By Proposition 2.32, we have

(3.18) ρi,ai(ai+1)ρi,bi(ai+1) = ρi,aibi(ai+1)

for all ai, bi ∈ Ui and all ai+1 ∈ Ui+1. By Proposition 2.22, therefore, ρi,ai ∈
Ki+1 for all ai ∈ Ui. We denote by ψi (for arbitrary i) the map from Ui to the
additive group of Ki+1 given by ψi(ai) = ρi,ai for all ai ∈ Ui. The elements

of ψi(U
]
i ) are invertible in Ki and ψi(ei) = 1 by (3.17), and by (3.18), ψi is a

homomorphism.

Proposition 3.19. Let Hi be as in Proposition 2.24 and let ϕi and ψi be as
in Notations 3.14 and 3.16 for some i. Then the following hold:

(i) ϕi is an isomorphism from Hi to Li+1.
(ii) ψi is an injective homomorphism from Ui to the additive group of Ki+1.
(iii) ψi(a

h
i ) = ϕi(h)2ψi(ai) for all ai ∈ Ui and all h ∈ Hi.

(iv) Ki+1 is generated by the image of ψi.
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Proof. An element in the kernel of ϕi is contained in CH(〈Ui+1, Ui+2〉). By
Proposition 2.16, therefore, (i) holds. The kernel of ψi is NUi(U[i+2,i+3]). By

Proposition 3.8, this normalizer is trivial. Thus (ii) holds. Let ai ∈ U ]i and
h ∈ Hi. Then

ψi(a
h
i ) = ϕi

(
µγ(ahi )µγ(ei)

)
by (3.17)

= ϕi
(
µγ(ai)

hµγ(ei)
)

by Proposition 2.14(iii)

= ϕi
(
h2µγ(ai)µγ(ei)

)
by Proposition 3.10

= ϕi(h)2 · ψi(ai)

Hence by Proposition 2.22, (iii) holds. By (3.17), Li+1 is contained in the
subring of Ki+1 generated by ψi(Ui). Since Ki+1 is generated by Li+1, (iv)
holds. �

Notation 3.20. Let ε = 1 or −1 and let mi+ε ∈ µγ(U ]i+ε) for some i. We set

αεi (h) = [mi+ε, h] for all h ∈ Hi. We also set α+
i = αεi if ε = 1 and α−i = αεi if

ε = −1.

Proposition 3.21. Then for all i, the following hold:

(i) αεi is a homomorphism from Hi to Hi+ε for ε = 1 and −1.
(ii) αεi is independent of the choice of mi+ε in Notation 3.20 for ε = 1 and
−1.

(iii) α+
i

(
α−i+1(h)

)
= h2 for all h ∈ Hi+1.

Proof. Choose i and let j = i + ε for ε = 1 or −1. If h ∈ Hi and aj ∈ U ]j ,

then [µγ(aj), h] = µγ(aj)µγ(ahj ) ∈ Hj by Proposition 2.14(iii). By Conventions
1.3(ii) and Proposition 3.9, it follows that αεi is a homomorphism. Thus (i)
holds.

Choose h ∈ Hi and let m,m′ ∈ µγ(U ]i+ε). Then [mm′, h] = 1 by Proposition

3.9 and [m,h]m
′

= [m,h]−1 by (i) and Proposition 3.10. By Conventions 1.3(i),
therefore, [m,h] = [m′, h]. Thus (ii) holds.

Let h ∈ Hi+1, m ∈ µγ(U ]i+1) and m′ ∈ µγ(U ]i ). Then mm′ is contained in

〈Ui−1, Ui+3〉 and hence commutes with Hi+1. By Proposition 3.10, hm = h−1.
Thus

[m, [m′, h]] = m · h−1m′hm′ ·m ·m′h−1m′h

= mh−1m′ · hmm′h−1 ·m′h

= mh−1m′ ·mm′ ·m′h = mh−1m · h = h2.

Thus (iii) holds. �

Proposition 3.22. For each i and each ai ∈ U ]i , let ξi be the map from Ki to
Ki+1 given by

(3.23) ξi(s) = ψi(ai)
−1 · ψi(sai)



DAGGER-SHARP TITS OCTAGONS 185

for all s ∈ Ki. Then the following hold:

(i) ξi is an injective homomorphism of rings from Ki to Ki+1 mapping the
identity 1 of Ki to the identity 1 of Ki+1 that does not depend on the
choice of ai.

(ii) ξi+1

(
ξi(s)

)
= s2 for all s ∈ Ki.

(iii) The map s 7→ s2 is an injective endomorphism of Ki.

Proof. Choose i and ai ∈ U ]i . By Proposition 3.19(ii), ψi is injective. Hence ξi
is injective. Let j = i+ ε for ε = 1 or −1, let h ∈ Hj and let s = ϕj(h). Then

ψi(ai)
−1 · ψi

(
sai) = ψi(ai)

−1 · ψi(ahi )

= ϕi
(
µγ(ai)µγ(ei)

)
· ϕi
(
µγ(ei)µγ(ahi )

)
= ϕi

(
µγ(ai)µγ(ahi )

)
= ϕi

(
[µγ(ai), h]

)
= ϕi

(
α−εj (h)

)
.

(3.24)

Thus by Proposition 3.21(ii), the restriction of ξi to ϕj(Hj) is independent of
the choice of ai and, by Proposition 3.21(i), this restriction is multiplicative.
Since Ki is generated by Li additively, ϕj(Hj) = Li and ξi is additive, it follows
that ξi is a homomorphism of rings that is independent of the choice of ai. Thus
(i) holds.

By (3.24), we have ξi ◦ϕi+1 = ϕi ◦α−i+1 and ξi ◦ϕi−1 = ϕi ◦α+
i−1 (composing

from right to left). Replacing i by i + 1 in the second equation, we obtain
ξi+1 ◦ ϕi = ϕi+1 ◦ α+

i . Thus

ξi+1 ◦ ξi ◦ ϕi+1 = ξi+1 ◦ ϕi ◦ α−i+1 = ϕi+1 ◦ α+
i ◦ α

−
i+1.

By Proposition 3.21(iii), therefore,

ξi+1

(
ξi(s)) = s2

for all s in the subset ϕi+1(Hi+1) = Li of Ki. This subset generates Ki

additively and, as was observed in Notation 3.12, 2 = 0 in Ki. Thus (ii)
holds. Since ξi and ξi+1 are both injective homomorphisms, it follows that (iii)
holds. �

Corollary 3.25. Let σ be an automorphism of Ki for some i and suppose that
σ(s2) = s2 for all s ∈ Ki. Then σ is the identity.

Proof. This follows from Proposition 3.22(iii). �

Proposition 3.26. Let N be as in Proposition 3.11 and suppose that Uni = Uj
for some n ∈ N . Then ψj(a

n
i ) = ψi(ai) for all ai ∈ Ui.

Proof. Let ai ∈ U ]i . Then

ψj(a
n
i ) = ϕj

(
µγ(ej)µγ(ani )

)
by (3.17)

= ϕj
(
µγ(ej)µγ(ai)

n
)

by Proposition 2.14(iii)

= ϕj
(
(µγ(ei)µγ(ai))

n
)

by Proposition 3.11
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= ϕi
(
µγ(ai)µγ(ei)

)
by (3.15)

= ψi(ai) by (3.17).

By Proposition 2.22, therefore, the claim holds. �

Proposition 3.27. Let b ∈ U ]i+3ε for some i and for ε = 1 or −1. Then

ψi+2ε(a
µγ(b)
i ) = ψi(ai) · ξi+2ε

(
ψi+3ε(b)

)
for all ai ∈ Ui, where ξi is as in Proposition 3.22.

Proof. It suffices to assume that i = 1 and ε = 1. Let m4 = µγ(e4) (as in
Proposition 3.11), let m′ = µγ(b) and choose a1 ∈ U1. Then ψ4(b) = ϕ4(m4m

′)
by (3.18) and thus

ψ3(am
′

1 ) = ψ3

(
am4·m4m

′

1

)
= ψ3

(
ϕ4(m4m

′)am4
1

)
= ψ3

(
ψ4(b)am4

1

)
= ψ3(am4

1 ) · ξ3
(
ψ4(b)

)
by (3.23). By Proposition 3.26, we have ψ3(am4

1 ) = ψ1(a1). �

Notation 3.28. Let K = K4, let F = ξ3(K3), let K̃ = ψ3(U3) and let F̃ =

ξ3(ψ2(U2)). By Proposition 3.26, we have K̃ = ψi(Ui) for all odd i and

F̃ = ξi+1(ψi(Ui)) = ξi+1(ψi+2(Ui+2))

for all even i. By (3.17), we have ψ3(e3) = ξ3(ψ2(e2)) = 1, so both K̃

and F̃ contain 1. By Proposition 3.19(ii) and (iv), K̃ is an additive sub-
group of K that generates K as a ring and (since ξ3 is a homomorphism

of rings) F̃ is an additive subgroup of F that generates F as a ring. The

group U2 is generated by U ]2 (by Proposition 2.22), ψ1(U1) = ψ3(U3) and

ψ2(U2) = ψ4(U4). By Proposition 3.27, therefore, K̃F̃ ⊂ K̃. By Propo-

sition 3.22(ii), K̃2 = ψ1(U1)2 = ξ3
(
ξ2(ψ1(U1))

)
and by Proposition 3.27,

ξ2(ψ1(U1)) ⊂ ψ2(U2). Therefore K̃2F̃ ⊂ ξ3(ψ2(U2)) = F̃ . We conclude that

(K, K̃, F̃ ) satisfies all the properties of an indifferent set as defined in [7, 10.1]
except that we do not know that K is a field.

Notation 3.29. Let K̃ and F̃ be as in Notation 3.28. By Proposition 3.19(ii)
and Proposition 3.22(i), ψi is an isomorphism from Ui to the additive group of

K̃ for i odd and ξi−1◦ψi is an isomorphism from Ui to the additive group of F̃ for

i even. We set xi(s) = ψ−1i (s) for all s ∈ K̃ if i is odd and xi(t) = (ξi−1◦ψi)−1(t)

for all t ∈ F̃ if i is even. Note that by (3.17), xi(1) = ei for all i.

Proposition 3.30. [x1(s), x4(t)] = x2(s2t)x3(st) for all s ∈ K̃ and all t ∈ F̃ .
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Proof. Let a1 = x1(s) for some s ∈ K̃ and a4 = x4(t) for some t ∈ F̃ . By

Proposition 2.22 and Proposition 2.32, it suffices to assume that ai ∈ U ]i for
i = 1 and 4. Let ni = µγ(ai) for i = 1 and 4. Then

[a1, a4] = an1
4 an4

1

by Proposition 2.18,

ψ3(an4
1 ) = ψ1(a1)ξ3(ψ4(a4)) = st

by Proposition 3.27 and

ξ3
(
ψ2(an1

4 )
)

= ξ3
(
ψ4(a4)

)
· ξ3
(
ξ2(ψ1(a1))

)
= s2t

by Proposition 3.22(ii) and Proposition 3.27. �

Proposition 3.31. F ⊂ K̃F ⊂ K̃ and K2 ⊂ K2F̃ ⊂ F̃ ⊂ F .

Proof. By Notation 3.28, K̃F̃ ⊂ K̃, F is generated by F̃ as a ring and 1 ∈ K̃. It
follows that F ⊂ K̃F ⊂ K̃. Similarly, we know that K̃2F̃ ⊂ F̃ , K is generated
by K̃ as a ring and 1 ∈ F̃ and hence K2 ⊂ K2F̃ ⊂ F̃ . �

Proposition 3.32. Let K× denote the group of invertible elements of K and
suppose that r ∈ K̃× := K̃ ∩K× and u ∈ F̃× := F̃ ∩K×. Then r−1 ∈ K̃ and
u−1 ∈ F̃ .

Proof. By Proposition 3.31, r−2 ⊂ F̃ and F̃K2 ⊂ F̃ . Hence r−1 = r · r−2 ∈
K̃F̃ ⊂ K̃ and u−1 = u · u−2 ⊂ F̃K2 ⊂ F̃ . �

Notation 3.33. Let x0(t) = x4(t)m4 and x5(t) = x1(t)m1 , where m1 and m4

are as in Proposition 3.11 and thus m1 = µγ(x1(1)) and m4 = µγ(x4(1)) by
Notation 3.29. By Proposition 2.18 and Proposition 3.30, we have x4(t)m1 =

x2(t) and x3(s)m4 = x1(s) for all s ∈ K̃ and all t ∈ F̃ . Conjugating the relation
in Proposition 3.30 by m4 and by m1, we thus obtain

(3.34) [x0(t), x3(s)] = x1(st)x2(s2t)

and

(3.35) [x2(t), x5(s)] = x3(st)x4(s2t)

for all s ∈ K̃ and all t ∈ F̃ .

Proposition 3.36. Let s ∈ K̃ and t ∈ F̃ . Then x1(s) ∈ U ]1 if and only if

s ∈ K̃× and x4(t) ∈ U×4 if and only if t ∈ F̃×.

Proof. Suppose that x1(s) ∈ U ]1 for some s ∈ K̃ and x4(t) ∈ U ]4 for some

t ∈ F̃ . Then λγ(x1(s)) = x5(r) for some r ∈ K̃ and κγ(x4(t)) = x0(u) for

some u ∈ F̃ . By Proposition 2.18(i) applied to [x1(s), x4(1)] = x2(s2)x3(s),
we obtain [x2(s2), x5(r)]4 = x4(1). By (3.35), it follows that (sr)2 = 1. By

Proposition 3.22(iii), therefore, sr = 1 and hence s ∈ K̃×. By Proposition
2.18(ii) applied to [x1(1), x4(t)] = x2(t)x3(t), we have [x0(u), x3(t)]1 = x1(1).

By (3.34), it follows that tu = 1. Hence t ∈ F̃×.
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Suppose, conversely, that s ∈ K̃× and t ∈ F̃×. By Proposition 3.30, (3.34)
and (3.35) and bit of calculation, we obtain

U
x1(s)x5(s

−1)
4 = U2 and U

x0(t
−1)x4(t)

3 = U1.

Hence x1(s) ∈ U ]1 and x4(t) ∈ U ]4 by Proposition 2.19. �

Proposition 3.37. x1(s)µγ(x1(1))µγ(x1(r)) = x1(r2s) for all r ∈ K̃× and all

s ∈ K̃.

Proof. Let αr = µγ(x1(1))µγ(x1(r)) for all r ∈ K̃×. By Proposition 2.18 and

Proposition 3.30, we have x4(t)µγ(x1(r)) = x2(r2t) and hence x4(t)αr = x4(r−2t)

for all r ∈ K̃× and all t ∈ F̃ . We have [µγ(U ]1), U3] = 1. Conjugating the
identity [x1(s), x4(1)]3 = x3(s) by αr and then applying Proposition 3.30, we

conclude that x1(s)αr = x1(r2s) for all r ∈ K̃× and all s ∈ K̃. �

Proposition 3.38. Let σ be an automorphism of K, let S denote the subgroup
{s 7→ r2s | r ∈ K̃×} of the automorphism group of the additive group of K and
suppose that [σ, S] = 1. Then σ is the identity.

Proof. Since [σ, S] = 1, we have σ(r2) = r2 for all r ∈ K̃×. By Proposition 2.22

and Proposition 3.36, K̃ is generated additively by K̃× and as was observed in
Proposition 3.28, K is generated as a ring by K̃. Therefore K is generated as
a ring by K̃×. Hence σ(s2) = s2 for all s ∈ K. The claim holds, therefore, by
Corollary 3.25. �

Proposition 3.39. Let h ∈ H, where H is as in Notation 2.23. Then there
exist ρ ∈ K̃× and σ ∈ Aut(K) such that x1(s)h = x1(ρsσ) for all s ∈ K̃.

Proof. There exist ρ ∈ K̃ and η ∈ F̃ such that

(3.40) x1(1)h = x1(ρ) and x4(1)h = x4(η).

By Proposition 3.36, xi(1) ∈ U ]i for i = 1 and 4 and thus ρ ∈ K̃× and η ∈ F̃×.

By Notation 3.28 and Proposition 3.32, ηK̃ = K̃ and ρ2F̃ = F̃ . We can thus
set x̂1(s) = x1(ρs) and x̂3(s) = x3(ρηs) for all s ∈ ρ−1K̃ and x̂2(t) = x2(ρ2ηt)

and x̂4(t) = x4(ηt) for all t ∈ η−1F̃ . By Proposition 3.30, we have

(3.41) [x̂1(s), x̂4(t)] = x̂2(s2t)x̂3(st)

for all s ∈ ρ−1K̃ and all t ∈ η−1F̃ .
Next we let βi be the map from K̃ to ρ−1K̃ such that xi(s)

h = x̂i(βi(s))

for i = 1 and 3 and all s ∈ K̃ and let βi be the map from F̃ to η−1F̃
such that xi(s)

h = x̂i(βi(t)) for i = 2 and 4 and all t ∈ F̃ . The maps
βi are all additive. By (3.40), we have β1(1) = 1 and β4(1) = 1. Conju-
gating the identity [x1(s), x4(1)]3 = x3(s) by h, we thus obtain x̂3(β3(s)) =

[x̂1(β1(s)), x̂4(1)]3 for all s ∈ K̃ and hence β1 = β3 by (3.41). Conjugating
the identity [x1(1), x4(t)]2 = x2(t)x3(t) by h, we obtain [x̂1(1), x̂4(β4(t))] =

x̂2(β2(t))x̂3(β3(t)) for all t ∈ F̃ . By (3.41), it follows that β2 = β4 and
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that β4 is the restriction of β3 to F̃ . Let β = β1. Conjugating the iden-
tity [x1(s), x4(t)]2 = x2(s2t) by h, we obtain [x̂1(β(s)), x̂4(β(t))]2 = x̂2(β(s2t))
and hence

β(s)2β(t) = β(s2t)

for all s ∈ K̃ and all t ∈ F̃ by one more application of (3.41). Setting t = 1, it

follows that β(s)2 = β(s2) for all s ∈ K̃ and since K2 ⊂ F̃ ⊂ K̃ by Proposition
3.31, we thus obtain

(3.42) β(s2)β(u2) = β(s2u2)

for all s ∈ K̃ and all u ∈ K. Since K̃ generates K, it follows that (3.42) holds
for all s, u ∈ K. In other words, β restricts to an automorphism of K2. By
Proposition 3.22(iii), every element of K2 has a unique square root in K. This
implies that the map β has a unique extension to an automorphism σ if K.
Hence x1(s)h = x̂1(sσ) = x1(ρsσ) for all s ∈ K̃. �

Proposition 3.43. Suppose that [H†, h] = 1 for some h ∈ H. Then there

exists ρ ∈ K̃× such that x1(s)h = x1(ρs) for all s ∈ K̃.

Proof. By Proposition 3.37, the subgroup of Aut(U1) induced by H† contains
the group

{x1(s) 7→ x1(r2s) | r ∈ K̃×}.

The claim holds, therefore, by Proposition 3.38 and Proposition 3.39. �

Proposition 3.44. K and F are fields and X is Moufang.

Proof. Suppose s ∈ K̃ is a non-zero element that does not lie in K× and let I
denote the principal ideal of K generated by s. Then x1(I ∩ K̃) is a non-trivial

subgroup of U1. By Proposition 3.36, either x1(I ∩ K̃) ∩ U ]1 = ∅ or I = K.
By hypothesis, the subgroup J in Theorem 3.1 centralizes H†. By Proposition
3.43, therefore, the subgroup x1(I ∩ K̃) is J-invariant. Again by hypothesis,

this implies that x1(I ∩ K̃) ∩ U ]1 6= ∅. Hence I = K. We conclude that every

non-zero element of K̃ lies in K× and thus U∗1 = U ]1 . By Proposition 3.31,

K2 ⊂ K̃ and K2 ⊂ F ⊂ K. It follows from the first containment that K
is a field and hence the second containment implies that also F is a field. By

Proposition 3.36 again, it follows that U∗4 = U ]4 . By Proposition 2.15, therefore,
X is Moufang. �

This concludes the proof of Theorem 3.1. Note that Notation 3.28 and
Proposition 3.44, we now know that (K, K̃, F̃ ) is an indifferent set as defined
in [7, 10.1]. Thus by [7, 7.5] and Proposition 3.30, Γ is isomorphic to the

Moufang polygon described in [7, 16.4] with (K, K̃, F̃ ) in place of (K,K0, F0).



190 B. MÜHLHERR AND R. M. WEISS

4. Octagons

Our goal in this section is to prove Theorem 1.1. Suppose that X satisfies
the hypotheses of Theorem 1.1, let (γ, i 7→ wi) and i 7→ Ui be as in Notation

2.4, let U ]i for all i be as in Proposition 2.11 and let H be as in Notation 2.23.
Let Vi for all i be as in Notation 2.33. We have Vi ⊂ Ui and [Vi, Uj ] = 1

whenever |i− j| ≤ 4. By Proposition 2.34, we can assume that the map i 7→ wi
has been chosen so that Vi 6= 1 for all even i. Since X is sharp, it follows that

(4.1) Vi ∩ U ]i 6= ∅
for all even i. By (2.13), we have

(4.2) V
µγ(ai)
j = V2i+8−j

for all i, j and all ai ∈ U ]i .

Remark 4.3. Let ai ∈ V ]i for some even i and let (v0, . . . , v4, v5) be a straight
5-path with v0 = wi+4. By Definition 2.2(iii) and Proposition 2.17, U[i−4,i+4]

acts transitively on the set of straight 5-paths that start at wi+4. Since waii+9

is opposite wi+9 at wi+8, it follows that vai5 is opposite v5 at v4.

Notation 4.4. Let u be a vertex at even distance from w4. By Proposition

2.5, we can choose an element g ∈ G such that u = wg4 . Let Mu = (V ]0 )g. By

Remark 4.3, the set V ]0 is normalized by the stabilizer Gw4
. Hence the set Mu

is independent of the choice of g. In particular, Mwi = V ]wi−4
for all even i.

Proposition 4.5. Let v be a vertex at odd distance from w0 and let u, z ∈ Γv
be distinct. Then Mu ∩Mz = ∅, where Mu and Mz are as in Notation 4.4.

Proof. By Definition 2.2(i), we can choose a vertex y in Γv that is opposite both
u and z. Let α = (v0, . . . , v8) be a root with v7 = y and v8 = v. By Definition
2.2(iii), there exists g ∈ Uα mapping u to z. Suppose that a ∈ Mu ∩Mz and
let v′4 = va4 . By Remark 4.3 and Notation 4.4, v′4 and v4 are opposite at v5.
By Proposition 2.9, a is the unique element of Mz mapping v4 to v′4. Since g
acts trivially on Γv5 , the element ag ∈ (Mu)g = Mz maps v4 to v′4. It follows

that [a, g] = 1. Thus g ∈ G
(1)
v1,v2,v3,v4,v5,v′4,v

′
3,v
′
2
, where v′3 = va3 and v′2 = va2 .

Let β = (v0, v1, v2, v3, v4, v5, v
′
4, v
′
3, v
′
2). Then β is a root (because v′4 and v4 are

opposite at v5) and g is an element of Uβ acting trivially on Γv′2 . By Proposition
2.9, it follows that g = 1. This contradicts the assumption that u 6= z. �

Proposition 4.6. [a1, a
−1
6 ] = a

µγ(a1)
6 ∈ V4 for all a1 ∈ U ]1 and all a6 ∈ V6.

Proof. Let a1 ∈ U ]1 , a6 ∈ V6, u9 = κγ(a1), v9 = λγ(a1) and m = µγ(a1). Thus
m = u9a1v9. By the choice of a1,

(w10, w9, w
′
10, w

′
11)

is a straight 3-path, where

w′i = w
a−1
1
i
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for i = 10 and 11. By Notation 2.33,

a6 ∈ G(1)
w10,w9,w′10,w

′
11
.

It follows that

[a1, a
−1
6 ] ⊂ G(1)

w6,...,w11
.

By Proposition 2.8, therefore, [a1, a
−1
6 ] ∈ U[4,5]. Let ak = [a1, a

−1
6 ]k for k = 4

and 5. Since [a6, u9] ∈ [V6, U9] = 1, we have

a4a5a6 = [a1, a
−1
6 ] · a6 = [u−19 mv−19 , a−16 ] · a6

= [mv−19 , a−16 ] · a6 = v9m
−1a6mv

−1
9

= am6 · [am6 , v−19 ]

(4.7)

by Conventions 1.3(i). By (4.2), we have am6 ∈ V m6 = V4. Thus by Proposition
2.6(i), [am6 , v

−1
9 ] ∈ U[5,8]. By Proposition 2.6(ii) and (4.7), it follows that a4 =

am6 ∈ V4. Hence

(4.8) [a1, a
−1
6 ] = am6 a5.

The element a6 ∈ V6 centralizes U[2,8]. By Proposition 2.6(i), a1 normal-

izes U[2,8]. It follows that a4a5 = [a1, a
−1
6 ] centralizes U[2,8]. Since a4 ∈ V4

centralizes U[2,8], we conclude that

(4.9) [a5, U[2,8]] = 1.

Choose a10 ∈ V ]10 and let u = w
a−1
10

9 and v = w
a−1
10

8 . Then (w9, w10, u, v) is a
straight 3-path. Hence there exists b ∈ U[2,3] such that ub = w11 and vb = w12.

By (4.9), [a5, b] = 1. Since a5 ∈ G(1)
w11,w12 , it follows that a5 ∈ G(1)

u,v. Therefore

(4.10) [a5, a10] ∈ G(1)
w8,w9,...,w12

.

The element a10 centralizes U[6,12] and by Proposition 2.6(i), a5 normalizes

U[6,12]. It follows that [a5, a10] centralizes U[6,12]. Choose a12 ∈ U ]12. By (4.10),
therefore,

(4.11) [a5, a10] ∈ G(1)
w8,w9,...,w11,w12,w′11,...,w

′
9,w
′
8
,

where

w′i = wa12i

for all i ∈ [8, 11]. By the choice of a12, the sequence

(w8, w9, . . . , w11, w12, w
′
11, . . . , w

′
9, w

′
8)

is a straight 8-path. By Proposition 2.9 and (4.11), it follows that

(4.12) [a5, a10] = 1.

By the choice of a10,

(w6, w7, w8, w9, w10, w
′′
9 , w

′′
8 , w

′′
7 , w

′′
6 )
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is a straight 8-path, where w′′i = wa10i for all i ∈ [6, 9], and by (4.12),

a5 ∈ G(1)
w6,w7,w8,w9,w10,w′′9 ,w

′′
8 ,w
′′
7 ,w
′′
6
.

By another application of Proposition 2.9, we conclude that a5 = 1. By (4.8),
therefore, the claim holds. �

Corollary 4.13. [U1, 〈V ]6 〉] ⊂ 〈V
]
4 〉, [U1, V6] ⊂ V4, U1 is abelian and for each

a6 ∈ V ]6 , the map a1 7→ [a1, a6] from U1 to V4 is a faithful homomorphism.

Proof. By Conventions 1.3(ii) and Proposition 4.6, we have [U ]1 , 〈V
]
6 〉] ⊂ 〈V

]
4 〉

and [U ]1 , V6] ⊂ V4. By Conventions 1.3(i) and Proposition 2.22, therefore, we

have [U1, 〈V ]6 〉] ⊂ 〈V
]
4 〉 and [U1, V6] ⊂ V4. Choose a6 ∈ V ]6 . By Conventions

1.3(i), the map a1 7→ [a1, a6] from U1 to V4 is a homomorphism. Choose a1 in
the kernel of this map and let u = wa110 . Since [a1, a6] = 1 and a6 ∈ Mw10 , we
have a6 ∈ Mw10

∩Mu and hence u = w10 by Proposition 4.5. By Proposition
2.9, therefore, a1 = 1. Thus the map a1 7→ [a1, a6] is injective. Since V4 is
abelian, it follows that U1 is too. �

Remark 4.14. Let D be the dihedral group generated by the permutations
i 7→ 8−i and i 7→ 10−i of Z16. By (2.13), Proposition 2.14(iii) and Proposition
4.6, we have

[ai, a
−1
j ] = a

µγ(ai)
j ∈ Vk

for all ai ∈ U ]i and aj ∈ Vj whenever (i, j) ∈ (1, 6)D. We will use this ob-
servation implicitly whenever we refer to Proposition 4.6. A similar comment
applies to all the identities and assertions that follow. Thus, for example, it
follows from Corollary 4.13 that [Ui, Vj ] ⊂ Vj−2 whenever (i, j) ∈ (1, 6)D and
that Ui is abelian for all odd i.

Proposition 4.15. For each a0 ∈ V ]0 and each a5 ∈ U ]5,

(i) [a2, v8] = a3a5a6 and
(ii) [a5, v8] = a6,

where v8 = λγ(a0), a2 = a
µγ(a5)
0 , a3 = (a−15 )µγ(a0) and a6 = a

µγ(a0)
2 .

Proof. Choose a0 ∈ V ]0 and a5 ∈ U ]5 . Let u8 = κγ(a0), v8 = λγ(a0), m =

µγ(a0), a2 = a
µγ(a5)
0 , a3 = (a−15 )m, a6 = am2 and w0 = um8 . Then m = u8a0v8,

ak ∈ U ]k for k = 2, 3 and 6 and w0 ∈ U ]0 by (2.13). By Proposition 2.6(i),

a
mw−1

0
2 ∈ U[1,5]a6. Since [a0, a2] ∈ [V0, U2] = 1, we have aa0v82 = av82 ∈ a2U[3,7]

by Proposition 2.6(i). Since mw−10 = u−18 m = a0v8, it follows that

av82 ∈ a2U[3,7] ∩ U[1,5]a6.

Thus av82 ∈ a2U[3,5]a6 by Proposition 2.6(ii).

By Proposition 4.6 and Remark 4.14, [a5, a
−1
0 ] = [a0, a5] = a2, so

av82 = ((a−15 )a0a5)v8 = (a−15 )mw
−1
0 av85 .
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We have (a−15 )mw
−1
0 = a

w−1
0

3 ∈ U[1,2]a3 and av85 ∈ a5U[6,7] by Proposition 2.6(i).
Thus

av82 ∈ U[1,2]a3 · a5U[6,7].

By Proposition 2.6(ii) and the conclusion of the previous paragraph, therefore,
av82 = a2a3a5a6 and av85 = a5a6. �

Corollary 4.16. [U5, λγ(V ]0 )] ⊂ 〈V ]6 〉.

Proof. By Proposition 4.15(ii), [U ]5 , λγ(V ]0 )] ⊂ V ]6 . The claim follows by Con-
ventions 1.3(i) and Proposition 2.22 since [U5, V6] = 1. �

Proposition 4.17. [U5, U7] = [U3, U7] = 1.

Proof. Choose a0 ∈ V ]0 and let v8 = λγ(a0) and m = µγ(a0). Choose a3 ∈ U ]3
and a7 ∈ U ]7 and let a5 = (a−13 )m

−1

. By Proposition 4.15(i), [a2, v8] = a3a5a6

for a2 = a
µγ(a5)
0 and a6 = am2 . By Proposition 4.6, [a7, a

−1
2 ] = a4 and therefore

aa72 = a4a2 for a4 = a
µγ(a7)
2 ∈ V4. Thus [a2, v8]a7 = [a4a2, v8] since [U7, U8] = 1.

Since [a4, v8] ∈ [V4, U8] = 1, we have [a4a2, v8] = [a2, v8] by Conventions 1.3(i).
Thus

(4.18) [a3a5a6, a7] = [[a2, v8], a7] = 1.

We have [a6, U[3,7]] ∈ [V6, U[3,7]] = 1 and thus [a3a5a6, a7] = [a3a5, a7]. By
Proposition 2.6(i) and Corollary 4.13, we have [a5, [a3, a7]] ∈ [a5, U[4,6]] = 1.
By Conventions 1.3(i), therefore, [a3a5, a7] = [a3, a7] · [a5, a7]. Hence [a3, a7] =

[a5, a7]−1 by (4.18). We conclude that [U ]3 , U
]
7 ] = [U ]5 , U

]
7 ]. By Proposition

2.6(i), [U5, U7] ⊂ U6 and thus [U ]3 , U
]
7 ] ⊂ U6. By Remark 4.14, [U ]3 , U

]
7 ] ⊂ U6

implies that [U ]3 , U
]
7 ] ⊂ U4. By Proposition 2.6(ii), U4 ∩U6 = 1. It follows that

[U ]5 , U
]
7 ] = [U ]3 , U

]
7 ] = 1. By Proposition 2.22, therefore, the claim holds. �

Proposition 4.19. [U1, U7] ⊂ U3U5.

Proof. Let i be odd. By Proposition 4.17, [Ui, Ui+2] = 1. By Definition 2.2(iii),

it follows that Ui ⊂ G
(1)
u for all u opposite wi+1 at wi+2 and Ui+2 ⊂ G

(1)
v for

all v opposite wi+7 at wi+8. Thus

[U ]1 , U
]
7 ] ⊂ G(1)

w6,...,w10
.

By 2.8, therefore, [U ]1 , U
]
7 ] ⊂ U[3,5].

Now choose a1 ∈ U ]1 and let u9 = κγ(a1), v9 = λγ(a1) and m = µγ(a1),

so m = u9a1v9. Let a7 ∈ U ]7 . Then a
mv−1

9
7 = au9a1

7 = aa17 ∈ U[3,5]a7 by the
conclusion of the previous paragraph. Since am7 ∈ U3 by (2.13), we also have

a
mv−1

9
7 ∈ am7 U[5,7] by Remark 4.14 and the conclusion of the previous paragraph.

Thus

aa17 ∈ am7 U[5,7] ∩ U[3,5]a7 ⊂ am7 U5a7
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by Proposition 2.6(ii). Hence [U ]1 , U
]
7 ] ⊂ U3U5. The claim follows now by

Conventions 1.3(i)–(ii), Proposition 2.22 and Proposition 4.17. �

Proposition 4.20. Let

Ĝ = H · 〈Ui | i odd 〉,
where H is as in Notation 2.23. Then there exist an indifferent Tits quadrangle

X̂ = (Γ̂, Â, {≡̂v}v∈V̂ ),

a coordinate system (γ̂, i 7→ ŵi) of X̂ with root group labeling i 7→ Ûi and a

homomorphism ϕ from Ĝ to Aut(X̂) such that ϕ(H) is the pointwise stabilizer

of γ̂ in ϕ(Ĝ) and the restriction of ϕ to Ui is an isomorphism from Ui to

Û(i+1)/2 for all odd i.

Proof. Let Φ8 be as in [1, 2.1] and let αi denote the root (wi, wi+1, . . . , wi+n) for
each i. We identify Φ8 with {αi | i ∈ Z} as described in [1, 4.7]. By [1, 5.1], the
map αi 7→ Ui is a stable Φ8-grading of G with torus H as defined in [1, 2.3]. By
Proposition 2.11, we can assume that the set Mαi that appears in [1, 2.3(iii)]

equals µγ(U ]i ). After identifying {αi | i odd} with Φ4, we observe that the

restriction of the map αi 7→ Ui to {αi | i odd} is a stable Φ4-grading of Ĝ with

torus H (and with the same sets Mαi). Let X̂ be the Tits quadrangle obtained
by applying [1, 5.2 and 5.3] to this Φ4-grading, let (γ̂, i 7→ ŵi) be the coordinate

system of X̂ described in [1, 5.7] and let i 7→ Ûi be the corresponding root

group labeling. Let ϕ be the homomorphism from Ĝ to Aut(X̂) corresponding

to the action of Ĝ on X̂ by right multiplication. Then by [1, 5.3], ϕ(H) is the

pointwise stabilizer of γ̂ in ϕ(Ĝ). By [1, 5.19], the restriction of ϕ to Ui is an

isomorphism from Ui to Û(i+1)/2 for all odd i. By Definition 2.30, Remark 4.14

and Proposition 4.17, X̂ is indifferent. �

Proposition 4.21. ϕ(U ]i ) = Û ](i+1)/2 for all odd i, λ̂γ̂ ◦ ϕ = ϕ ◦ λγ and

κ̂γ̂ ◦ ϕ = ϕ ◦ κγ , where Û(i+1)/2 and ϕ are as in Proposition 4.20 and λ̂γ̂ and

κ̂γ̂ are as in Proposition 2.11 applied to X̂.

Proof. To prove the first claim, it suffices to assume that i = 1. Let â1 =

ϕ(a1) for some a1 ∈ U1. Suppose first that â1 ∈ Û ]1 , let ĉ9 = λ̂γ̂(a1) and
let c9 be the unique element of U9 such that ϕ(c9) = ĉ9. By Proposition
2.11, we have Ua1c99 = U1. By Proposition 2.28, therefore, a1c9 maps the root

(w1, w0, w15, . . . , w9) to the root (w1, w2, w3, . . . , w9). Since U8 = G
(1)
w9,w10,...,w15

and U2 = G
(1)
w3,w4,...,w9 , it follows that Ua1c98 = U2. By Proposition 2.19(i),

therefore, a1 ∈ U ]1 and c9 = λγ(a1). Suppose, conversely, that a1 ∈ U ]1 , let
c9 = λγ(a1) and let ĉ9 = ϕ(c9). By Proposition 4.17 and Proposition 2.11

applied to X, we have Û â1ĉ94 = Û2. By Proposition 2.19(i) again, it follows

that â1 ∈ Û ]1 and ĉ9 = λ̂γ̂(â1). Thus ϕ(U ]i ) = Û ](i+1)/2 and λ̂γ̂ ◦ϕ = ϕ ◦ λγ . By

Proposition 2.14(i), it follows that κ̂γ̂ ◦ ϕ = ϕ ◦ κγ . �



DAGGER-SHARP TITS OCTAGONS 195

Corollary 4.22. If X̂ is Moufang, then U ]i = U∗i for all odd i.

Proof. If X̂ is Moufang, then by Notations 2.3 and 2.10, Û ]i = Û∗i for all i. The
claim holds, therefore, by Proposition 4.21. �

Corollary 4.23. X̂ is sharp.

Proof. LetH† be as in Notation 2.23. SinceX is dagger-sharp and Ui is abelian,
every non-trivial H†-invariant subgroup of Ui for i odd contains elements of

U ]i . Every non-trivial ϕ(H†)-invariant subgroup of Ûj is the image under ϕ of
a non-trivial H†-invariant subgroup of Ui. By Proposition 4.21, it follows that
for all j, every non-trivial ϕ(H†)-invariant subgroup of Ûj contains elements of

Û ]j . Since Ûj is abelian for all j, it follows that X̂ is sharp. �

Proposition 4.24. Let i be odd and let j = (i + 1)/2. Then there exists a

bijection πi from Γwi to Γ̂ŵi mapping ≡wi to ≡̂ŵj and wi+2ε to ŵj+ε for ε = 1

and −1 such that πi(u
g) = πi(u)ϕ(g) for all g ∈ 〈Ui, H, Ui+8〉.

Proof. Let Qi = 〈Ui, H, Ui+8〉 and let

Si =
⋂

g∈〈Ui,Ui+8〉

Hg.

By [1, 5.1], we can identify X with the Tits octagon that arises as in [1, 5.2–5.3]
starting with i 7→ Ui and H. By [1, 5.2(a)], the group Qi acts transitively on

Γwi and hence by [1, 5.4(i)], Si is the kernel of this action. Let Ĥ = ϕ(H).

The homomorphism ϕ maps Qi to Q̂j := 〈Ûj , Ĥ, Ûj+4〉 and Si to

Ŝj :=
⋂

g∈〈Ûj ,Ûj+4〉

Ĥg.

Suppose that ϕ(g) ∈ Ĥ for some g ∈ Qi. Let j = i or i+ 8. Then ϕ(Uj) =

Û
ϕ(g)
j = ϕ(Ugj ). By [1, (2.4) and 5.1], we have Qj = UjUj+8UjH. Thus

g = abch with a, c ∈ Uj , b ∈ Uj+8 and h ∈ H. Thus

ϕ(Ugj ) = ϕ(U bj )ϕ(c)ϕ(h).

Since ϕ(c) and ϕ(h) normalize ϕ(Uj), it follows that ϕ(U bj ) = ϕ(Uj). By
Proposition 2.27 and Corollary 4.23, it follows that b = 1. Hence g = ach. Thus
g normalizes both Ui and Ui+8. The group Qi stabilizes both wi and wi+8. By

Proposition 2.28, it follows that g ∈ H. We conclude that ϕ−1(Ĥ) = H. Hence

ϕ−1(Sj) = Si. Therefore ϕ induces an isomorphism from Qi/Si to Q̂j/Ŝj .
It follows that ϕ induces a bijection from the set of right cosets of Bi := UiH

in Qi to the set of right cosets of B̂j := ÛjĤ in Q̂j . By [1, 5.4(i)], therefore,

there exists a bijection πi from Γwi to Γ̂ŵj mapping wi+2 to ŵj+1 such that

πi(u
g) = πi(u)ϕ(u) for all u ∈ Qi. Choose a ∈ U ]i and let â = ϕ(a). By

Proposition 4.21, â ∈ Û ]i and ϕ maps m := µγ(a) to m̂ := µγ̂(â). Thus πi
maps wi−2 = wmi+2 to ŵj−1 = ŵm̂j+1 and ϕ maps the double coset BimBi to the
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double coset B̂jm̂B̂j . Thus by [1, 5.2(c)], vertices u, v ∈ Γwi are opposite at
wi if and only if πi(u) and πi(v) are opposite at ŵj . In other words, πi maps
≡wi to ≡̂ŵj . �

Corollary 4.25. X̂ is 5-plump.

Proof. By hypothesis, X is 9-plump. By Proposition 4.24, therefore, X̂ is also
9-plump “at ŵj” for all j, so by Proposition 2.5, X̂ is 9-plump. Thus, in

particular, X̂ is 5-plump. �

Proposition 4.26. The normalizer NÛ1
(Û3Û4) is trivial.

Proof. By Proposition 2.18(i), we have NÛ]1
(Û3Û4) = ∅. By Proposition 4.21,

therefore, NU]1
(U5U7) = ∅. Since X is dagger-sharp, it follows that NU1(U5U7)

= 1. Hence NÛ1
(Û3Û4) = 1. �

Proposition 4.27. The following hold:

(i) exp(Ui) = exp(Vi+1) = 2 for all odd i.

(ii) µγ(a0)2 = µγ(a1)2 = 1 for all a0 ∈ V ]0 and a1 ∈ U ]1.

(iii) κγ(a0) = λγ(a0)−1 and κγ(a1) = λγ(a1) for all a0 ∈ V ]0 and a1 ∈ U ]1.

Proof. By Propositions 3.2, 4.21 and 4.26, we have exp(Ui) = 2 and κγ(ai) =

λγ(ai) for all odd i and all ai ∈ U ]i . Choose a1 ∈ U ]1 and a4 ∈ V4. By
Proposition 4.6, there exists a6 ∈ V6 such that [a1, a6] = a4. Then a24 =
[a21, a6] = 1 since [a1, a4] ∈ [U1, V4] = 1. Thus exp(V4) = 2 and hence exp(Vi) =
2 for all even i. Thus (i) holds. By Proposition 2.14(i), it follows that (ii) and
the first claim in (iii) hold. �

Proposition 4.28. [U4, κγ(a0)] = [U4, λγ(a0)] = 1 for all a0 ∈ V ]0 .

Proof. Choose a0 ∈ V ]0 and let u8 = κγ(a0), v8 = λγ(a0), m = µγ(a0) and

(4.29) w0 = vm
−1

8 .

Then v8m
−1 · u8a0 = 1 and hence m = w0u8a0. Let a4 ∈ U4. By (2.13),

am4 ∈ U4, so [a0, a
m
4 ] ∈ [V0, U4] = 1. Thus aw0

4 = a
ma−1

0 u−1
8

4 = a
mu−1

8
4 =

am4 · [am4 , u−18 ] ∈ am4 U[5,7] by Proposition 2.6(i). On the other hand, aw0
4 =

[w0, a
−1
4 ] · a4 ∈ U[1,3]a4 by Proposition 2.6(i). Thus by Proposition 2.6(ii), a4

commutes with m, u8 and w0. By (4.29), a4 commutes with v8 as well. �

Proposition 4.30. [a2, a8]6 = a
µγ(a8)
2 ∈ V6 and [a2, a8]7 = 1 for each a2 ∈ V2

and a8 ∈ U ]8.

Proof. Choose a2 ∈ V2 and a8 ∈ U ]8 . Let u0 = κγ(a8), v0 = λγ(a8) and
m = µγ(a8), so m = u0a8v0. Then am2 = au0a8v0

2 = aa8v02 = a2 · [a2, a8]v0 since
[U0, a2] ⊂ [U0, V2] = 1. By Proposition 2.6(i), a2 · [a2, a8]v0 ∈ U[1,6]a7, where
a7 = [a2, a8]7. By (2.13), am2 ∈ V6. By Proposition 2.6(ii), therefore, a7 = 1.
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Thus a2 ·[a2, a8]v0 ∈ U[1,5]a6, where a6 = [a2, a8]6. By Proposition 2.6(ii) again,
we conclude that a6 = am2 . �

Corollary 4.31. [a2, a8] ∈ U[3,5] · 〈V ]6 〉 for all a2 ∈ 〈V ]2 〉 and all a8 ∈ U ]8.

Proof. This holds by Proposition 2.6(i) and Proposition 4.30. �

Corollary 4.32. [〈V ]2 〉, 〈V
]
8 〉] ⊂ 〈V

]
4 〉U5〈V ]6 〉.

Proof. By Proposition 2.6(i) and Proposition 4.30, [V ]2 , V
]
8 ] ⊂ U[3,5]V

]
6 . By

Remark 4.14, therefore, [V ]2 , V
]
8 ] ⊂ V ]4U[5,7]. Hence

[V ]2 , V
]
8 ] ⊂ V ]4U[5,7] ∩ U[3,5]V

]
6 = V ]4U5V

]
6

by Proposition 2.6(ii). The claim follows now by Conventions 1.3(i)–(ii). �

Proposition 4.33. Let a0 ∈ V ]0 and a3 ∈ U ]3. Then [a3, v8] = a4a5 and

[a3, v
−1
8 ] = a4a5a6, where v8 = λγ(a0), a5 = a

µγ(a0)
3 , a6 = a

µγ(a5)µγ(a0)
0 and

a4 = a
µγ(a6)
0 .

Proof. Let u8 = κγ(a0), v8 = λγ(a0), m = µγ(a0), a5 = am3 and w0 = um8 .

Then m = u8a0v8. By (2.13), a5 ∈ U ]5 and w0 ∈ U0. By Proposition 2.6(i),

therefore, a
mw−1

0
3 ∈ U[1,4]a5 and, since [a0, a3] ∈ [V0, U3] = 1, aa0v83 = av83 ∈

a3U[4,7]. Since m = a0v8w0, it follows that

av83 ∈ a3U[4,7] ∩ U[1,4]a5.

Therefore av83 ∈ a3U4a5 by Proposition 2.6(ii). Thus [a3, v8] = a4a5 for some
a4 ∈ U4. By Proposition 4.27(iii), u8 = v−18 . By Conventions 1.3(ii), therefore,

1 = [a3, v8u8] = [a3, u8] · (a4a5)u8 .

By Proposition 4.28, [a4, u8] = 1. By Proposition 4.15(ii), [a5, v8] = a6, where

a6 = a
µγ(a5)m
0 ∈ V ]6 . Since [a6, U8] ⊂ [V6, U8] = 1, it follows by Conventions

1.3(ii) that [a5, v
−1
8 ] = a−16 . Hence

[a5, u8] = [a5, v
−1
8 ] = a6

by Proposition 4.27(i). We conclude that [a3, u8] = (a4a5a6)−1. By Proposition
4.27(i), (a4a5a6)−1 = a−14 a5a6 since [a4, a6] ∈ [U4, V6] = 1. It remains to show

only that a4 = a
µγ(a6)
0 , since then a4 ∈ V4 by (2.13) and thus a4 = a−14 by

Proposition 4.27(i).
Since [a0, a3a

−1
4 ] ∈ [V0, U[3,4]] = 1, we have

au8a0
3 = (a3 · [a3, u8])a0 = (a3a

−1
4 a5a6)a0 = a3a

−1
4 aa05 a

a0
6 .

By Proposition 4.6, aa05 ∈ V2a5. By Corollary 4.32, [V ]0 , V
]
6 ] ⊂ V2U3V4 and

hence

[a0, a6] ∈ V2U3a
µγ(a6)
0
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by Proposition 4.30. Thus by Proposition 4.17,

au8a0
3 = a3a

−1
4 aa05 a

a0
6 ∈ V2a3a

−1
4 a5a

a0
6 ⊂ V2U3a

−1
4 a

µγ(a6)
0 a5a6

since [V2, U[3,5]] = 1. On the other hand, au8a0
3 = amu8

3 = au8
5 = a5a6 since

u8 = v−18 . Thus a4 = a
µγ(a6)
0 by Proposition 2.6(ii). �

By Proposition 4.27(i), exp(Ui) = exp(Vi+1) = 2 for all odd i. From now
on, we will use this fact without explicitly referring to Proposition 4.27(i).

Proposition 4.34. NV2
(U[4,8]) = 1.

Proof. Let a2 ∈ V ]2 and a5 ∈ U ]5 . By (2.13), we have λγ(a
µγ(a5)
2 ) ∈ U8 and by

Proposition 4.15(i),

[a2, λγ(a
µγ(a5)
2 )]3 6= 1.

Thus a2 does not normalize U[4,8]. Since X is sharp, the claim follows. �

Proposition 4.35. Suppose that [a2, a8]5 = 1 for some a2 ∈ 〈V ]2 〉 and some

a8 ∈ V ]8 . Then a2 = 1.

Proof. By Corollary 4.32, we have [a2, a8] ∈ V4V6. Thus [[a2, a8], U8] = 1. Since
[a8, U8] ∈ [V8, U8] = 1, it follows that [[a2, U8], a8] = 1 by [7, 2.3]. Hence

[a2, U8] ⊂ U[3,7] ∩ CG(a8) = U[4,7]

by Proposition 2.6(i) and Proposition 4.13. Thus a2 normalizes U[4,8]. By
Proposition 4.34, it follows that a2 = 1. �

Proposition 4.36. For each a6 ∈ 〈V ]6 〉 and a8 ∈ V ]8 , there exists a3 ∈ U3 such
that [a3, a8] = a6.

Proof. Choose a6 ∈ 〈V ]6 〉 and a8 ∈ V ]8 and let u0 = κγ(a8), v0 = λγ(a8)

and m = µγ(a8). Let a2 = am6 . Then a2 ∈ 〈V ]2 〉 by (2.13) and m = m−1

by Proposition 4.27(ii). By Proposition 4.30 and Corollary 4.32, therefore,
[a2, a8] ∈ V4U5a6. Let a5 = [a2, a8]5, a3 = am5 and b2 = [v−10 , a3]. By (2.13),
a3 ∈ U3 and thus

(4.37) [a3, a8] ∈ V6
by Corollary 4.13. By Corollary 4.16, we have [λγ(V ]8 ), U3] ⊂ 〈V ]2 〉. Thus

[v0, a3] ∈ 〈V ]2 〉. Since [U0, V2] = 1, it follows that b2 = [v0, a3]−1 ∈ 〈V ]2 〉. Hence

a
v−1
0

3 = [v−10 , a3] · a3 = b2a3

by Proposition 4.27(i). Thus by Corollary 4.32, we have

a
mv−1

0 a8
5 = a

v−1
0 a8

3 = (b2a3)a8

= b2 · [b2, a8] · a3 · [a3, a8]

∈ U[2,4] · [b2, a8]5 · [b2, a8]6 · [a3, a8]

(4.38)
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since [a3, [b2, a8]6] ∈ [U3, [V2, V8]6] ⊂ [U3, V6] = 1. We have mv−10 a8 = u0.
Since au0

5 ∈ U[1,4]a5, we conclude that

[b2, a8]5 = a5 and [b2, a8]6 = [a3, a8]

by Proposition 2.6(ii), (4.37) and (4.38). Since [b2, [a2, a8]] ∈ [V2, U[4,6]] = 1,

the first of these equations implies that [a2b2, a8]5 = a25 = 1, so a2 = b2 by
Proposition 4.35. Thus [a3, a8] = [b2, a8]6 = [a2, a8]6 = a6. �

Proposition 4.39. Let a3 ∈ U1, a6 ∈ V ]6 and a8 ∈ V ]8 and suppose that

[a3, a8] = a6. Then a3 ∈ U ]3.

Proof. Let u = wa312 and let b = aa38 . Then a8 ∈Mw12 and b ∈Mu, where Mw12

and Mu are as in Notation 4.4. Since a3 fixes w10 and w11, u is opposite w10

at w11. Since [a3, a8] = a6, we a6a8 = b ∈ Mu. By Proposition 4.5, u is the
unique vertex in Γw11

such that a6a8 is contained in Mu. By Proposition 4.36,

it follows that for all a6 ∈ V ]6 and a8 ∈ V ]8 , there exists a unique vertex u in
Γw11 such that a6a8 ∈ Mu and u is opposite w10 at w11. By symmetry, the

vertex u is also opposite w12 at w11. Thus a1 ∈ U ]1 by Notation 2.10. �

Proposition 4.40. [U2, U5] ⊂ 〈V ]4 〉.

Proof. Choose a0 ∈ V ]0 , b2 ∈ U2 and a5 ∈ U ]5 and let v8 = λγ(a0) and

a2 = a
µγ(a5)
0 . By (2.13), a2 ∈ V ]2 , so [a2, b2] = 1 and by Conventions 1.3(ii),

Proposition 2.6(i) and Corollary 4.13,

[a2, [b2, v8]] ∈ [a2, U[3,7]] = [a2, U7] ⊂ 〈V ]4 〉

since [a2, U[3,6]] ⊂ [V2, U[3,6]] = 1. It follows that [b2, [a2, v8]] ∈ 〈V ]4 〉 by [7, 2.3]

applied to the quotient group U[2,8]/〈V ]4 〉. By Proposition 4.15(i),

[a2, v8] ∈ U3a5V6 = U3V6a5,

so [b2, a5] = [b2, [a2, v8]] ∈ 〈V ]4 〉 since [U2, U3V6] = 1. Thus [U2, U
]
5 ] ⊂ 〈V ]4 〉.

The claim holds, therefore, by Proposition 2.22. �

Proposition 4.41. Let v8 = a8w8 for some a8 ∈ V8 and some w8 ∈ λγ(U ]0)

and suppose that v8 ∈ U ]8. Then a8 ∈ 〈V ]8 〉.

Proof. Let a0 = κγ(v8), so a0 ∈ U ]0 and by Proposition 2.14(iv), v8 = λγ(a0).

Let u8 = κγ(a0), m = µγ(a0) and w0 = um8 . Choose a3 ∈ U ]3 . Thenm = u8a0v8

and by (2.13), am3 ∈ U
]
5 and w0 ∈ U ]0 . Hence a

mw−1
0

3 ∈ U[1,5] by Proposition

2.6(i). Let a2 = [a0, a
−1
3 ]. By Proposition 4.40, a2 ∈ 〈V ]2 〉. We have aa0v83 =

(a2a3)v8 ∈ U[2,7] by Proposition 2.6(i). Since m = a0v8w0, it follows that

(a2a3)v8 ∈ U[2,7] ∩ U[1,5].

Therefore

(4.42) (a2a3)v8 ∈ U[2,5]
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by Proposition 2.6(ii). By Corollary 4.31, [a2, v8] ∈ U[3,5] · 〈V ]6 〉. Thus

a2 · [a2, v8] · a3 ∈ U[2,5]〈V ]6 〉.

Since

(a2a3)v8 = a2 · [a2, v8] · a3 · [a3, v8],

it follows by Proposition 2.6(ii) and (4.42) that [a3, v8] ∈ U[4,5] · 〈V ]6 〉. Since
[V8, U[4,8]] = 1, we have v8 = w8a8 and [[a3, w8], a8] = 1. Thus

[a3, v8] = [a3, w8a8] = [a3, a8] · [a3, w8]a8 = [a3, a8] · [a3, w8]

by Conventions 1.3(ii). We have [a3, w8] ∈ U[4,5] by Proposition 4.33. Since

[V6, U[4,5]] = 1, it follows that [a3, a8] ∈ U[4,5] · 〈V ]6 〉. By Proposition 4.6,

therefore, a8 ∈ 〈V ]8 〉. �

Proposition 4.43. Let a0 ∈ U ]0. If [a0, a5] ∈ U[1,2] for some a5 ∈ U5, then

[a0, a5] ∈ 〈V ]2 〉.

Proof. Suppose that [a0, a5] = a1a2 with a0 ∈ U ]0 and ai ∈ Ui for i = 1, 2 and
5. Let u8 = κγ(a0), v8 = λγ(a0) and m = µγ(a0). Then am5 ∈ U3 by (2.13), so

(4.44) au8a0
5 = a

mv−1
8

5 ∈ U[3,7]

by Proposition 2.6(i). By Proposition 4.40, au8
5 = a5a6 for some a6 ∈ 〈V ]6 〉, so

au8a0
5 = (a5a6)a0 = [a0, a5] · a5 · [a0, a6] · a6 = a1a2a5 · [a0, a6] · a6.

By Corollary 4.31, [a0, a6] ∈ 〈V ]2 〉U[3,5]. Thus au8a0
5 ∈ a1a2〈V ]2 〉U[3,6]. Hence

au8a0
5 ∈ U[3,7] ∩ a1a2〈V ]2 〉U[3,6]

by (4.44). By Proposition 2.6(ii), therefore, a1 = 1 and a2 ∈ 〈V ]2 〉. �

Proposition 4.45. Let a4 ∈ U4 and suppose that [a1, a4] = 1 for some a1 ∈ U ]1,
Then [a4, v9] ∈ U5a

m
4 , where v9 = λγ(a1) and m = µγ(a1).

Proof. Let a6 = am4 . Then a6 ∈ U6 by (2.13), m = µγ(v9) by Proposition
2.14(ii), a1 = κγ(v9) by Proposition 2.14(iv) and κγ(v9) = λγ(v9) by Propo-
sition 4.27(iii). Thus m = a1v9a1. We have ama14 ∈ U[2,5]a6 and aa1v94 =
av94 ∈ a4U[5,8] by Proposition 2.6(i). Since ma1 = a1v9, it follows that av94 ∈
a4U[5,8] ∩ U[2,5]a6. By Proposition 2.6(ii), therefore, av94 ∈ a4U5a6. Thus
[a4, v9] ∈ U5a6 = U5a

m
4 . �

Proposition 4.46. Let a4 ∈ U ]4 and suppose that [a1, a4] = 1 for some a1 ∈ U ]1.
Then a4 ∈ V4.

Proof. Let v9 = λγ(a1) and m = µγ(a1). By Proposition 4.45, [a4, v9] ∈ U5a
m
4 .

We have am4 ∈ U6. By Proposition 2.6(ii) and Proposition 4.43, therefore,
am4 ∈ V6. Hence a4 ∈ V4. �
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Proposition 4.47. Suppose that [a0, a5] = a1a2 and ai ∈ Ui for i = 0, 1, 2
and 5. Then a1 = 1.

Proof. The subgroup V4 is normal in U[0,5]. By Conventions 1.3(i), Proposition
2.6(i), Proposition 4.17 and Proposition 4.40, we have

[[U0, U4], U5] ⊂ [U[1,3], U5] ⊂ V4.

Since [U4, U5] = 1, it follows by [7, 2.3] applied to the quotient group U[0,5]/V4
that [[U0, U5], U4] ⊂ V4. Thus [a1a2, U4] ⊂ V4. Choose b4 ∈ U4. By Conventions
1.3(i), we have [a1a2, b4] = [a1, b4]a2 ·[a2, b4]. By Proposition 4.40, [a1, b4]a2 ∈ V2
and by Proposition 2.6(i), [a2, b4] ∈ U3. By Proposition 2.6(ii), therefore,
[a1, b4] = 1. Since b4 is arbitrary, it follows that a1 ∈ CU1

(U4). By Proposition

4.15(ii), on the other hand, U ]4 6⊂ V4, so by Proposition 4.46, CU]1
(U4) = ∅.

Since X is sharp, it follows that CU1
(U4) = 1. Thus a1 = 1. �

Proposition 4.48. Let a0 ∈ U0. If [a0, a5] ∈ U[1,2] for some a5 ∈ U5, then

[a0, a5] ∈ 〈V ]2 〉.

Proof. Suppose that [a0, a5] = a1a2 with ai ∈ Ui for i = 0, 1, 2 and 5. By

Proposition 4.47, we have a1 = 1. Choose b7 ∈ U ]7 . By Proposition 2.6(i), a0
normalizes U[1,6] and hence ab70 = fa0 for some f ∈ U[1,6]. Again by Proposition
2.6(i), U2 normalizes U[3,6] and hence f = eb2 for some b2 ∈ U2 and some
e ∈ U1U[3,6]. By Corollary 4.13, U5 is abelian. By Proposition 2.6(i) and
Proposition 4.17, therefore, [e, a5] = 1 and thus

(4.49) ab72 = [a0, a5]b7 = [ab70 , a
b7
5 ] = [eb2a0, a5] = [b2a0, a5]

by Conventions 1.3(i). By Conventions 1.3(i) and Proposition 4.40, we have

[b2a0, a5] = d4 · [a0, a5] = d4a2 = a2d4 for some d4 in 〈V ]4 〉. By (4.49), therefore,

we have [a2, b7] = d4. Let d2 = d
µγ(b7)
4 . By (2.13), d2 ∈ 〈V ]2 〉 and by 4.6,

[d2, b7] = d4. Thus [a2d2, b7] = 1 by Conventions 1.3(i) and Proposition 4.27(i).
Therefore

a2b2 ∈ U2 ∩ U b72 ⊂ G
(1)
w3,w4,w5,w6,w7,w′6,w

′
5,w
′
4
,

where w′i = wb7i for all i. The path (w2, w3, w4, w5, w6, w7, w
′
6, w

′
5, w

′
4) is straight

and of length 8. Thus α := (w2, w3, w4, w5, w6, w7, w
′
6, w

′
5, w

′
4) is a root and

Uα = G
(1)
w3,w4,w5,w6,w7,w′6,w

′
5
.

By Proposition 2.9, therefore, a2d2 = 1. Hence a2 ∈ 〈V ]2 〉. �

Proposition 4.50. Let a4 ∈ U4. If [a1, a4] = 1 for some a1 ∈ U ]1, then
a4 ∈ V4.

Proof. Let v9 = λγ(a1) and m = µγ(a1). By Proposition 4.45, [a4, v9] ∈ U5a
m
4 .

We have am4 ∈ U6. By Proposition 2.6(ii) and Proposition 4.48, it follows that
am4 ∈ V6. Hence a4 ∈ V4. �
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Proposition 4.51. Let e1 ∈ U ]1 and a6 ∈ V ]6 . Then

V ]6 = {aµγ(e1)µγ(a1)6 | a1 ∈ U ]1}.

Proof. Let a4 = a
µγ(e1)
6 and choose b6 ∈ V ]6 . By Proposition 4.36, there ex-

ists a1 ∈ U∗1 such that [a1, b6] = a4. By Proposition 4.39, a1 ∈ U ]1 . Thus

a
µγ(e1)µγ(a1)
6 = b6 by Proposition 4.6. �

Let Wi = λγ(V ]i−8) for all even i.

Proposition 4.52. Wi ⊂ U ]i for all even i.

Proof. This holds by Proposition 2.11. �

Proposition 4.53. U8 = V8 · 〈W8〉.

Proof. Choose a5 ∈ U ]5 and a8 ∈ U8. By Proposition 4.40, [a5, a8] ∈ 〈V ]6 〉.
By Proposition 4.15(ii), [a5,W8] contains elements of V ]6 . The product µγ(e1)

µγ(a1) for e1, a1 ∈ U ]1 normalizes W8 and by Proposition 4.17, it centralizes

U5. By Proposition 4.51, therefore, V ]6 ⊂ [a5,W8]. Therefore 〈V ]6 〉 ⊂ [a5, 〈W8〉].
Thus there exists b ∈ 〈W8〉 such that [a5, a8] = [a5, b]. Hence [a5, a8b

−1] = 1.
By 4.50, we conclude that a8b

−1 ∈ V8. �

Proposition 4.54. [U4, U8] = 1.

Proof. This holds by Proposition 4.28 and Proposition 4.53. �

Proposition 4.55. [H1H7, H8] = 1, where Hi for all i is as in Proposition
2.24.

Proof. By Proposition 4.17, H1 centralizes U5 andH7 centralizes U3. By Propo-
sition 4.54, H8 centralizes U4. Thus [H1, H8] ⊂ CH(〈U4, U5〉) and [H7, H8] ⊂
CH(〈U3, U4〉). Thus [H1, H8] = [H7, H8] = 1 by Proposition 2.16. �

Proposition 4.56. Let X̂ be as in Proposition 4.20. Then X̂ is Moufang and

U ]i = U∗i for all odd i.

Proof. Let H† be as in Proposition 2.23. We have H1H7 ⊂ H† and by Propo-
sition 2.24, H† = H1H8. By Proposition 2.24 and Proposition 4.21, we have

ϕ(Û ]i ) = Û ](i+1)/2 for all odd i and Ĥ† = ϕ(H1H7), where ϕ is as in Proposition

4.20 and Ĥ† is as in Proposition 2.23 applied to X̂. Since X is dagger-sharp,

every non-trivial H†-invariant subgroup of Ui for i odd contains elements of U ]i .

Hence every non-trivial ϕ(H†)-invariant subgroup of Ûi for arbitrary i contains

elements of Û ]i . By Proposition 4.25 and Proposition 4.55, therefore, we can

apply Theorem 3.1 with J = ϕ(H8). Thus X̂ is Moufang. The second claim
holds, therefore, by Proposition 4.22. �

Proposition 4.57. Let e1 ∈ U ]1 and a6 ∈ V ]6 . Then

〈V ]6 〉∗ = {aµγ(a1)µγ(e1)6 | a1 ∈ U ]1}.
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Proof. Choose b6 ∈ 〈V ]6 〉∗ and let b4 = b
µγ(e1)
6 . By (2.13), b4 ∈ 〈V ]4 〉∗ and by

4.36, there exists a1 ∈ U∗1 such that [a1, a6] = b4. By Proposition 4.56, a1 ∈ U ]1 .

Thus b
µγ(e1)µγ(a1)
6 = a6 by Proposition 4.6. �

Corollary 4.58. 〈V ]i 〉∗ = V ]i for all even i.

Proof. This holds by Proposition 4.57. �

Proposition 4.59. U8 = V8 ∪ V8W8.

Proof. Choose a5 ∈ U ]5 and a8 ∈ U8. By Proposition 4.40, [a5, a8] ∈ 〈V ]6 〉.
By Proposition 4.15(ii), [a5,W8] contains elements of V ]6 . The product µγ(a1)

µγ(e1) for e1, a1 ∈ U ]1 normalizes W8 and by Proposition 4.17, it centralizes

U5. By Proposition 4.57 and Corollary 4.58, therefore, 〈V ]6 〉∗ ⊂ [a5,W8]. Thus
there exists b ∈W8 ∪ {1} such that [a5, a8] = [a5, b]. Hence [a5, a8b

−1] = 1. By
Proposition 4.50, we conclude that a8b

−1 ∈ V8. �

Proposition 4.60. 〈W8〉 ⊂ 〈V ]8 〉 ∪ 〈V
]
8 〉 ·W8.

Proof. Choose a3 ∈ U ]3 and b8 ∈ 〈W8〉. By Proposition 4.59, there exists
a8 ∈ V8 and w8 ∈W8 ∪ {1} such that b8 = a8w8. We have

(4.61) [a3,W8] ⊂ U[4,5]

and [a3,W
−1
8 ] ⊂ U[4,5]V

]
6 by Proposition 4.33. By Conventions 1.3(ii), Propo-

sition 4.40 and 4.54, it follows that

[a3, b8]6 ∈ [a3, 〈W8〉]6 ⊂ 〈V ]6 〉.

By Conventions 1.3(ii), Proposition 4.6 and (4.61), on the other hand, we have

[a3, b8] = [a3, a8w8] = [a3, w8] · [a3, a8]w8 ∈ U[4,5]a
µγ(a3)
8 .

Hence a8 ∈ 〈V ]8 〉. �

Corollary 4.62. Û8 := 〈V ]8 〉 ∪ 〈V
]
8 〉 ·W8 is a subgroup of U8.

Proof. Since V8 ⊂ Z(U8), the product 〈V ]8 〉·〈W8〉 is a subgroup. This subgroup

contains Û8. By Proposition 4.60, on the other hand, 〈V ]8 〉 · 〈W8〉 ⊂ Û8. �

Proposition 4.63. V8 ∩ Û8 = 〈V ]8 〉, where Û8 is as in Proposition 4.62.

Proof. Let a3 ∈ U ]3 , a8 ∈ 〈V ]8 〉 and w8 ∈ W8. By Conventions 1.3(ii) and
Proposition 4.13,

[a3, a8w8] = [a3, w8] · [a3, a8]w8 ∈ [a3, w8]V6.

By Proposition 4.33, therefore, [a3, a8w8]4 6= 1. Hence a8w8 6∈ V8 by another
application of Corollary 4.13. �

Proposition 4.64. V8 = 〈V ]8 〉.
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Proof. Let Û8 be as in Corollary 4.62. By Proposition 4.41 and Proposition

4.59, U ]8 ⊂ Û8. By Proposition 2.22 and Corollary 4.62, it follows that U8 = Û8.

Hence V8 = V8 ∩ Û8 = 〈V ]8 〉 by Proposition 4.63. �

Corollary 4.65. V ]i = V ∗i .

Proof. This holds by Proposition 4.58 and Proposition 4.64. �

We observe now that we can continue to follow the proof of [7, 17.7] given
in [7, 31.1–31.34] verbatim, starting with [7, 31.22]. The arguments from this
point on require only Proposition 4.52, Proposition 4.56, and Corollary 4.65;

the equality U ]i = U∗i for i even is never required. The results [7, 31.22–31.34]
yield the conclusion that there exist an octagonal set (K,σ), isomorphisms xi
from the additive group of K to Ui for all odd i, isomorphisms xi from the
additive group of K to the center of Ui for all even i and and injections yi from
the set K to Ui for all even i such that Ui = yi(K)xi(K) and

(4.66) yi(s)yi(t) = yi(s+ t)xi(s
σt)

for all s, t ∈ K and for all even i and all the commutator relations in [7, 16.9]
hold.

It is now a lengthy but straightforward calculation to show using (4.66) and
the commutator relations in [7, 16.9] that

U
x0((u+v

σ)/Rσ)y0(u/R)x8(t)y8(u)
7 = U1

for all s, t ∈ K not both zero, where

R = vσ+2 + uv + uσ

(cf. [7, 10.14 and 32.13]). By Proposition 2.19(ii), therefore, U∗8 = U ]8 . By

Proposition 4.56, it follows that U∗i = U ]i for all i. Hence by Proposition 2.15,
X is Moufang. This concludes the proof of Theorem 1.1.
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