• Title/Summary/Keyword: adjoint system

Search Result 79, Processing Time 0.027 seconds

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

Shape optimal design of a 2-D heat transfer system with the isoparametric finite element (等係數 유한요소를 사용한 2차원 열전달시스템의 형상 최적설계)

  • 유영면;박찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 1987
  • In this study a method of shape optimization is applied to two dimensional heat transfer system. For this the optimization problem is defined in a functional form including cost, constraints and the system governing equation. Then the material derivative concept in continuum mechanics and the adjoint variable method are employed for the shape design sensitivity analysis. With the sensitivity analysis results, an optimum is sought with the gradient projection optimization algorithm. The two dimensional isoparametric finite elements are used for accurate analysis and sensitivity calculations. The above method is employed to find the boundary shape to achieve a desired temperature distribution along a segment of the boundary subject to the maximum area constraint.

Optimal Design to minimize Eddy Current Loss of Structure Part in Electrical Machines using Topology Optimization (위상최적화를 이용한 전기기기 구조부의 와전류손을 줄이는 최적설계)

  • Lee, Heon;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.655-656
    • /
    • 2008
  • This research presents a topology optimization to minimize eddy current loss maintaining mechanical robustness of structure part in electrical machines A design sensitivity equation for the topology optimization is derived by employing the discrete system equations combined with the adjoint variable method. As a numerical example, frame design of a C-core actuator is performed by the proposed method.

  • PDF

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.405-435
    • /
    • 2017
  • We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.

Design Optimization of Structure-born Noise of Automobile (자동차 소음/진동의 최적 설계)

  • 왕세명;최경국;하리쿨카니
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.104-109
    • /
    • 1996
  • Continuum element sensitivity analysis (CONTESA) and system optimization (SYSOPT) for Noise, Vibration, and Harshness (NVH) have been developed and applied to automobile structures for sizing, topology, and configuration design using Mindlin plate and Timoshenko beam theories. The topology optimization has been developed using the density approach, sequential linear programming, and the adjoint variable method. CONTESA has been tested using various vehicle models. Optimized vehicles using CONTESA and SYSOPT are manufactured to validate the simulation-based design methodology.

  • PDF

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

Parameter design of an hydraulic track motor system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.208-211
    • /
    • 1993
  • This paper presents the parameter design method for the desired time response of hydraulic track motor system of an industrial excavator. The dynamic response depends upon many component parameters such as motor displacement, spring constant and various valve coefficients. Most of them are to be determined to obtain the desired response while some parameters are fixed, or discrete for the off-the-shelf type components. The parameters might be selected through repeated simulations of the system once the system is mathematically represented. This paper, however, presents optimization technique to select two parameters using a parameter optimization technique. The variational approach is applied to the system equations which are represented as state equations and from those system equations derived are the adjoint equations. The gradients for each parameter also are formed for the iterations.

  • PDF

Multi-channel Active Noise Control Using Subband Hybrid Adaptive Filters (서브밴드 하이브리드 적응필터를 이용한 다중채널 능동소음제어)

  • 남현도;김덕중;박용식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.94-101
    • /
    • 2000
  • In this paper, a multi-channel active noise control(ANC) system using subband hybrid control techniques is proposed. Subband techniques could reduce computational burden and improve the performance of ANC systems by dividing several frequency subband and adjusting adaptive filter coefficients. So it can effectively cancel noises at wanted frequency range and use lower order adaptive filter than the existing algorithms. The adjoint LMS algorithm, which prefilter the error signals instead of the divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of the subband adaptive systems. To improve performance of the ANC system, a weighted hybrid control technique, which has weightily properties of feedforward control systems and feedback control systems, is applied. This algorithm shows higher stability and good noise attenuation property in broad band ANC systems. Computer simulations were performed to show the effectiveness of the proposed algorithm.

  • PDF

Topology Optimization of Perpendicular Magnetic Recording System by Considering Magnetic Nonlinearity (재료의 비선형을 고려한 수직기록장치의 위상최적화)

  • Park, Soon-Ok;Yoo, Jeong-Hoon;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.821-827
    • /
    • 2010
  • This paper proposes a density method based topology optimization of a perpendicular magnetic recording system design in which the saturation effect is taken into account. During the topology optimization process in magnetic fields, the magnetic reluctivity is updated in accordance with the changes in element density determined by a sensitivity analysis. The magnetic reluctivity is determined from a B-H curve and is used to represent nonlinear material property, i.e., the saturation effect. The sensitivity for a generalized response functional is formulated using the adjoint variable method in which the nonlinear property is taken into account and the objective function is set such that the magnetic energy in the media is maximized. Effects due to the nonlinear property can be observed from a numerical study in which the linear and the nonlinear topology optimization results are compared.

Numerical study on impact noise control of PC slab coupled with viscoelastic material (점탄성재료가 결합된 PC슬래브의 바닥충격음 제어에 관한 수치해석 연구)

  • Hwang, Jae-Seung;Hong, Gun-Ho;Park, Hong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1160-1166
    • /
    • 2007
  • In this study, a new slab system that adjoint precast slabs are connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the slab system on the vibration and noise control. Substructuring is introduced to develope the equation of motion of the slab system and the optimal properties of viscoelastic material are calculated. For the performance evaluation of the new slab system, the sound power and acceleration of the slab are compared with those of two way slab and the slab which the viscoelastic material is not connected. Numerical results show that the sound power of the new slab system can be reduced an amount of 6dB.

  • PDF