Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.4.765

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS  

Nie, Cunyun (Department of Mathematics and Physics The Hunan Institution of Engineering)
Tan, Min (School of Mathematical and Computational Sciences Hunan University of Science and Technology)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.4, 2012 , pp. 765-778 More about this Journal
Abstract
We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.
Keywords
symmetry; finite volume element scheme; superconvergence; tetrahedron grids;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 H. Rui, Convergence of an upwind control-volume mixed finite element method for convection diffusion problems, Computing 81 (2007), no. 4, 297-315.   DOI
2 S. Shu, H. Y. Yu, Y. Q. Huang, and C. Y. Nie, A preserving-symmetry finite volume scheme and superconvergence on quadrangle grids, Inter. J. Numer. Anal. Model. 3 (2006), 348-360.
3 D. D. Sun and S. Shu, An algebraic multigrid method of the high order Lagrangian finite element equation in $R^3$, Mathematic Numerica Sinca 1 (2005), 101-112.
4 T. Tanaka, Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong backgroud potential fields, J. Compt. Phys. 3 (1994), 381-389.
5 W. L. Wan, T. F. Chan, and B. Smith, An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput. 21 (2000), no. 4, 1632-1649.
6 Y. X. Xiao, S. Shu, and T. Y. Zhao, A geometric-based algebraic multigrid method for higher-order finite element equations in two-dimensional linear elasticity, Numer. Linear Algebra Appl. 16 (2009), no. 7, 535-559.   DOI   ScienceOn
7 J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581-613.   DOI   ScienceOn
8 C. A. Hall, T. A. Porsching, and G. L. Mesina, On a network metod for unsteady incompressible fiuid flow on triangular grids, Int. J. Numer. Meth. FL. 15 (1992), 1383-1406.   DOI
9 B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniches for linear and bilinear finite element, Numer. Methods Partial Differential Equations 15 (1997), 151-167.
10 J. Huang and S. Xi, On the finite volume element method for general self-adjoint elliptic problems, SIAM J. Numer. Anal. 35 (1998), no. 5, 1762-1774.   DOI   ScienceOn
11 S. Liang, X. Ma, and A. Zhou, A symmetric finite volume scheme for selfadjoint elliptic problems, J. Comput. Appl. Math. 147 (2002), no. 1, 121-136.   DOI   ScienceOn
12 J. L. Lv and Y. H. Li, $L^2$ error estimate of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math. 33 (2010), no. 2, 129-148.   DOI
13 X. Ma, S. Shu, and A. Zhou, Symmetric finite volume discretization for parabolic problems, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 39-40, 4467-4485.   DOI   ScienceOn
14 N. K. Madsena and R. W. Ziolkowskia, A three-dimensional modified finite volume technique for Maxwell's equations, Electromagnetics 10 (1990), 147-161.   DOI   ScienceOn
15 T. J. Moroney and I. W. Turner, A three-dimensional finite volume method based on radial basis functions for the accurate computational modelling of nonlinear diffusion equations, J. Comput. Phys. 225 (2007), no. 2, 1409-1426.   DOI   ScienceOn
16 C. Y. Nie and S. Shu, Symmetry-preserving finite volume element scheme on unstructured quadrilateral grids, Chinese J. Comp. Phys. 26 (2004), 17-22.
17 H. Rui, Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems, J. Comput. Appl. Math. 146 (2002), no. 2, 373-386.   DOI   ScienceOn
18 H. Baek, S. D. Kim, and H. C. Lee, A multigrid method for an optimal control problem of a diffusion-convection equation, J. Korean Math. Soc. 47 (2010), no. 1, 83-100.   DOI   ScienceOn
19 A. A. Abedini and R. A. Ghiassi, A three-dimensional finite volume model for shallow water flow simulation, Ausrtalian Journal of Basic AS. 4 (2010), 3208-3215.
20 R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
21 R. E. Bank and D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987), no. 4, 777-787.   DOI   ScienceOn
22 M. Benjemaa, N. Glinsky-Olivier, V. M. Cruz-Atienza, and J. Virieux, 3-D dynamic rupture simulations by a finite volume method, Int. J. Geophys. 178 (2009), 541-560.   DOI   ScienceOn
23 Z. Cai, On the finite volume element method, Numer. Math. 58 (1991), no. 7, 713-735.
24 L. Chen, Superconvergence of tetrahedral finite elements, Inter. J. Numer. Anal. Model. 3 (2006), 273-282.
25 C. M. Chen and Y. Huang, High accuarcy theory of finite element methods, Science Press, Hunan, China (in Chinese), 1995.
26 S. Chou and Q. Li, Error estimates in $L^p,\;L^{\infty}\;and\;H^1$ in covolume methods for ellipitic and parabolic problems, Math. Comp. 69 (1999), 103-120.   DOI   ScienceOn
27 P. G. Ciarlet, The Finite Element Method for Elliptie Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
28 R. Ewing, R. Lazarov, and Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Equations 16 (2000), no. 3, 285-311.   DOI
29 G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element, Numer. Methods Partial Differential Equations 10 (1994), no. 5, 651-666.   DOI