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A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON

TETRAHEDRON GRIDS

Cunyun Nie and Min Tan

Abstract. We construct a symmetric finite volume element (SFVE)
scheme for a self-adjoint elliptic problem on tetrahedron grids and prove

that our new scheme has optimal convergent order for the solution and

has superconvergent order for the flux when grids are quasi-uniform and
regular. The symmetry of our scheme is helpful to solve efficiently the

corresponding discrete system. Numerical experiments are carried out to

confirm the theoretical results.

1. Introduction

Due to the local conservation property, the finite volume element methods
[1, 4, 5, 6, 11, 13, 14, 23] have been greatly popular in many fields, such as
computational fluid dynamics, computational electromagnetic and petroleum
engineering and so on.

In many cases, the symmetry is the fundamental physical principle of reci-
procity. Hence, it is significant and important to present a symmetric discrete
scheme. It is well known that the standard finite volume element (FVE) meth-
ods [4, 6, 9, 14, 17] usually generate a linear system with asymmetric matrix.
The asymmetry leads to the fact that many efficient iterative methods which
are suitable for solving the symmetric linear systems, such as the precondition
conjugate gradient (PCG) method, can’t be employed. Some SFVE schemes
[16, 18, 21, 22, 24] essentially overcome the above defect for self-adjoint elliptic
boundary-value and parabolic problems on triangular and quadrilateral grids.
There are many finite volume schemes [1, 5, 19, 20, 26] constructed for solving
three dimension problems. However, few scheme is symmetric so far. It has
motivated us to propose a new symmetric scheme.
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The main feature of our new scheme on tetrahedron grids lies in preserving
the symmetry of self-adjoint elliptic problems since it can be written as a vari-
ational formulation. The key to the desired feature is to choose an appropriate
numerical flux. This choice preserves not only the good accuracy of the ap-
proximation but also the symmetry of continuous equations. Another feature
of the new scheme is its super-convergent approximation to the flux function
when tetrahedron grids are quasi-uniform and regular, which is very useful and
important for some real problems.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some notations, function spaces and operators. In Section 3, we describe
a symmetric finite volume element scheme and build the variation formulation
for it. In Section 4, we derive the error estimates for the new scheme. In Sec-
tion 5, we present numerical experiments which illustrate basic features of our
scheme.

2. Some notations, function spaces and operators

Let Ωh = {Ek, 1 ≤ k ≤ M} (see Figure 1) be a mesh made up of tetrahe-
drons on Ω and X = {Xi, 1 ≤ i ≤ N} be the set of nodes on Ωh, where M
and N are the numbers of elements and nodes, respectively. According to the
partition Ωh, we can get a dual mesh Ωh∗ = {bXi , 1 ≤ i ≤ N}, where bXi is
called as the control volume about node Xi. We assume that Ωh and Ωh∗ are
quasi-uniform [10].

Figure 1. (a) visual directions to coordinates. (b) uniform
grids. (c) nonuniform grids.

Any element Ek (see Figure 2(a)) can be decomposed into four polyhedrons
Dj (1 ≤ j ≤ 4) and each polyhedron corresponds to some part of bXj . Let
Γj (1 ≤ j ≤ 4) denote 4X1X2X4

, 4X1X2X3
, 4X3X4X2

and 4X1X3X4
, respec-

tively. In Figure 2, Qj (1 ≤ j ≤ 4) is the barycenter of Γj and Ml (1 ≤ l ≤ 6)
is the midpoint of the segment X1X2, X2X3, X3X4, X1X3, X1X4 and X4X2,
respectively. Let Ok be the barycenter of Ek.

Let ∂Dj = Dj ∩ (Ek/Dj) (1 ≤ j ≤ 4) be the relevant surface of Dj (see
Figure 2(b), (c), (d) and (e)) and each ∂Dj is composed of three quadrilat-
erals whose edges are dashed lines. For one example, ∂D1 is composed of
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�Q1M1Q2Ok, �Q2M4Q4Ok and �Q4M5Q1Ok, and denote the three quadri-
laterals as Γ1,i (i = 1, 2, 3), respectively. It is obvious that ∂D1 = Γ1,1 + Γ1,2 +
Γ1,3.

Figure 2. (a) element Ek = ∪4
j=1Dj . (b) ∂D1. (c) ∂D2. (d)

∂D3. (e) ∂D4.

We introduce the following three finite element spaces

V h = {v ∈ H1
0 (Ω) : v|Ek ∈ P1, Ek ∈ Ωh, v ∈ C(Ω̄)},

V h0,∗ = {v ∈ L∞(Ω) : v|bXi ∈ P0, bXi ∈ Ωh∗}
and

V h0 = {v ∈ L∞(Ω) : v|Ek ∈ P0, Ek ∈ Ωh},
where Pk is the set of polynomials of degree less than or equal to k.

We define the following operators

Ih∗ v(x) = v(Xi), ∀ x ∈ bXi ,

Ihv(x) = v(Ok), ∀ x ∈ Ek,

Ĩhv(x) =
1

|Ek|

∫
Ek

v(x)dx, ∀ x ∈ Ek

and the projector Q̂ which satisfies

(1)

∫
Ω

(Q̂v − v)wdx = 0, ∀ w ∈ V h, v ∈ L2(Ω),

where |Ek| is the volume of Ek.
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3. Symmetric finite volume element scheme

We consider the following second-order elliptic problem

(2)

{
−∇(K∇u) = f, x = (x1, x2, x3) ∈ Ω,

u = 0, x ∈ ∂Ω,

where K(x) = (kij(x))3×3 is a symmetric and positive definite matrix function
satisfying

(3) 0 < α0|ξ|2 ≤ ξtK(x)ξ ≤ α1|ξ|2 <∞, ∀ x ∈ Ω, ξ ∈ R3.

Integrating (2) on any control volume bXi ∈ Ωh∗ and using the Green formula,
we obtain

(4) −
∫
∂bXi

K
∂u

∂n
ds =

∫
bXi

fdx,

where n is the unit outward normal vector on ∂bXi .
Assuming that uh ∈ V h is an approximation to u in (4), we have

(5) −
∫
∂bXi

K
∂uh

∂n
ds =

∫
bXi

fdx.

Considering (5) on any element Ek, we can obtain

(6) −
∫
∂Dl

K
∂uh

∂n
ds =

∫
Dl

fdx, 1 ≤ l ≤ 4.

In fact,

(7) uh(x)|Ek =

4∑
m=1

uhmNm(x),

where uhm = uh(Xm) and Nm(x) is the shape function at Xm.
Similar to the finite element methods, we introduce the FVE element stiff

matrix AEk = (alm)4×4 and load vector fEk = (fl)4×1. By (6) and (7), we
have

(8) alm = −
∫
∂Dl

K
∂Nm
∂n

ds, 1 ≤ l,m ≤ 4

and

(9) fl =

∫
Dl

fdx, 1 ≤ l ≤ 4.

For the standard FVE methods, the mid-point formula is applied to the
right side of (8), which leads to an asymmetric element stiff matrix. Taking D1

as one example, we have

a1m = −
∫
∂D1

K
∂Nm
∂n

ds
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= −

(
K(B1)

∫
Γ1,1

∂Nm
∂n

ds+K(B2)

∫
Γ1,2

∂Nm
∂n

ds+K(B3)

∫
Γ1,3

∂Nm
∂n

ds

)
,

where Bi (i = 1, 2, 3) is the barycenter of Γ1,i, respectively.
Since K(Bi) (i = 1, 2, 3) may be different when K(x) is variable, it leads

the matrix AEk to a nonsymmetric matrix.
In the following, we shall construct a symmetric matrix. Taking the approx-

imation of K(x) as

K(x) ≈ K(Ok), ∀ x ∈ Ek
and substituting it into the right side of (8), we have

(10) a1m = −K(Ok)

∫
∂D1

∂Nm
∂n

ds.

The new approximation changes not only virtually the numerical flux for
−
∫
∂Dl

K ∂Nm
∂n ds but also the symmetry of the matrix AEk .

Next, we shall transfer (10) to the variation formulation. To illustrate it, we
take l = 1 as example.

The equality 4Nm = 0 and the Green formula imply that

(11) a1m = −K(Ok)

∫
∂D1

∂Nm
∂n

ds = K(Ok)

∫
Γa

∂Nm
∂n

ds,

where Γa = Γa,1 + Γa,2 + Γa,3 and Γa,1, Γa,2, Γa,3 denote �X1M1Q1M5,
�X1M1Q2M4 and �X1M4Q4M5 (see Figure 2(b)), respectively.

Since ∂Nm
∂n |Γa,ν (ν = 1, 2, 3) is constant and

∫
Γν
N1ds = |Γν |

3 =
∫

Γa,ν
ds, we

have ∫
Γa,ν

∂Nm
∂n

ds =

∫
Γν

∂Nm
∂n

N1ds.

Taking the sum for the above integration about index ν and noting thatN1|Γ4
=

0, we have

(12)

3∑
ν=1

∫
Γa,ν

∂Nm
∂n

ds =

4∑
ν=1

∫
Γν

∂Nm
∂n

N1ds =

∫
∂Ek

∂Nm
∂n

N1ds.

The Green formula implies that∫
∂Ek

∂Nm
∂n

N1ds =

∫
Ek

∇Nm∇N1dx.

Hence, by (11), (12) and the equality above, we have

(13) a1m = K(Ok)

∫
Ek

∇Nm∇N1dx.

Similarly, we can get the variation formulation for (8) as follows

(14) alm = aEk(Nm, Nl), 1 ≤ l,m ≤ 4,
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where

(15) aEk(u, v) = K(Ok)

∫
Ek

∇u∇vdx.

For (9), we usually take the following approximation

fj ≈ |Dj |f(Xj), 1 ≤ j ≤ 4.

Assembling all AEk , fEk , 1 ≤ i ≤ M , we can get the new scheme of (2) on
tetrahedron grids

(16) AU = F,

where the stiff matrix A and load vector F satisfy

A =

M∑
k=1

ITk A
EkIk, F =

M∑
k=1

ITk f
Ek ,

Ik : RN → R4 is the nature inclusion and U ∈ RN is the solution vector.
The symmetry of new matrix AEk implies that the following result holds

true.

Theorem 3.1. The finite volume element scheme (16) is symmetric.

From (16), one can see that the variation formulation for (2) can be expressed
as: to find uh ∈ V h such that

(17) ah(uh, v) = (f, Ih∗ v), ∀ v ∈ V h,
where

(18) ah(u, v) =

M∑
k=1

aEk(u, v)

and aEk(u, v) is defined by (15).

4. Error estimates

In this section, for convenience, we write C . D means C ≤ c1D and
write C & D means C ≥ c2D, where c1, c2 are two positive constants. K ∈
W k,∞(Ω) (k = 1, 2) means that ki,j ∈ W k,∞(Ω), 1 ≤ i, j ≤ 3 and ‖K‖l,∞ =
max

1≤i,j≤3
‖ki,j(x)‖l,∞,l=1,2. Denote ‖.‖m as the norm ‖.‖m,2.

One assumption is as follows:
(A0) For any element Ek ∈ Ωh, 1 ≤ k ≤M , Ok is the barycenter of it.

The operators introduced in Section 2 hold some properties [2] in the fol-
lowing lemma.

Lemma 4.1. (1) Let u ∈ H1(Ω). Then

‖u− Ĩhu‖0 . h|u|1.
(2) Let u ∈ Vh. Then

‖u− Ih∗ u‖0 . h|u|1.
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(3) Let K ∈W 1,∞(Ω). Then

‖K − PhK‖0,∞ . h‖K‖1,∞,
where Ph = Ih∗ or I

h.

Lemma 4.2. Under the assumption (A0), we have∫
Ek

(v − Phv)dx = 0, ∀ v ∈ Vh,

where Ph = Ih∗ or I
h.

Proof. Under the assumption (A0), by simple calculations, we have∫
Ek

Phvdx =
|Ek|

4

4∑
i=1

v(Xi) =

∫
Ek

vdx,

where |Ek| is the volume of Ek.
Hence, ∫

Ek

(v − Phv)dx = 0, ∀ v ∈ Vh. �

Corollary 4.3. Under the assumption (A0), let K ∈W 2,∞(Ω). Then

(19) ‖
∫
Ek

(K − IhK)dx‖0,∞,Ek . h2|Ek|‖K‖2,∞,Ek , ∀ Ek ∈ Ωh.

Lemma 4.4. Let f ∈ L2(Ω). Then

|(f, v − Ih∗ v)| . h‖u‖2‖v‖1,∀ v ∈ Vh.
Furthermore, under the assumption (A0), let f ∈ H1(Ω) and u ∈ H3(Ω).
Then we have

|(f, v − Ih∗ v)| . h2‖u‖3‖v‖1,∀ v ∈ Vh.

Proof. By the Hölder inequality and Lemma 4.1,

|(f, v − Ih∗ v)| . ‖f‖0‖v − Ih∗ v‖0 . h‖f‖0‖v‖1 . h‖u‖2‖v‖1.
Furthermore, under the assumption (A0), by Lemma 4.2 and Lemma 4.1,

|(f, v − Ih∗ v)| = |(f − Ĩhf + Ĩhf, v − Ih∗ v)|

. ‖f − Ĩhf‖0‖v − Ih∗ v‖0 + |(Ĩhf, v − Ih∗ v)|

. h2‖f‖1‖v‖1

. h2‖u‖3‖v‖1. �

Noting K(x) satisfies (3), one can obtain the following lemma.

Lemma 4.5. The bilinear form ah(u, v) defined by (18) is boundary and posi-
tive definite, i.e.,

ah(v, v) & ‖v‖21, ∀ v ∈ Vh,
ah(w, v) . ‖w‖1‖v‖1, ∀ v, w ∈ Vh.
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Lemma 4.6. Let u ∈ H2(Ω) ∩H1
0 (Ω). Then

‖uh‖1 . ‖u‖2.

Proof. By Lemma 4.5, the Hölder inequality and

‖Ih∗ uh‖0 . ‖uh‖0,
we have

‖uh‖21 . ah(uh, uh) = |(f, Ih∗ uh)| . ‖f‖0‖Ih∗ uh‖0 . ‖u‖2‖uh‖0 . ‖u‖2‖uh‖1.
Hence,

‖uh‖1 . ‖u‖2. �

The finite element solution uh ∈ V h for (2) satisfies

(20) a(uh, vh) =

∫
Ω

K∇uh∇vhdx, ∀ vh ∈ V h.

There exists the following relationship between uh and uh.

Lemma 4.7. (1) Let f ∈ L2(Ω) and K ∈W 1,∞(Ω). Then

(21) |a(uh − uh, v)| . h‖u‖2‖v‖1, ∀ v ∈ Vh.
(2) Under the assumption (A0), let f ∈ H1(Ω) and K ∈W 2,∞(Ω). Then

(22) |a(uh − uh, v)| . h2‖u‖3‖v‖1, ∀ v ∈ Vh.

Proof. By (17) and (20), for any v ∈ V h, we have

(23)

a(uh − uh, v) = a(uh, v)− ah(uh, v) + ah(uh, v)− a(uh, v)

= (f, v − Ih∗ v) +

M∑
k=1

∫
Ek

(IhK −K)∇uh∇vdx

= I1 + I2.

By Lemma 4.4, we derive

(24) |I1| .
{
h‖f‖0‖v‖1 . h‖u‖2‖v‖1, when f ∈ L2(Ω),
h‖f‖1‖v‖1 . h2‖u‖3‖v‖1, when f ∈ H1(Ω).

Noting that

M∑
k=1

∫
Ek

|∇uh∇v|dx =

∫
Ωh
|∇uh∇v|dx . ‖uh‖1‖v‖1 . ‖u‖2‖v‖1,

by Lemma 4.1 and Corollary 4.3, we have

(25) |I2| .
{
h‖K‖1,∞‖u‖2‖v‖1, when K ∈W 1,∞(Ω),
h2‖K‖2,∞‖u‖2‖v‖1, when K ∈W 2,∞(Ω).

Combining (23), (24) with (25), one can obtain (21) and (22), respectively. �

Setting v = uh − uh in Lemma 4.7, one has the following result.
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Corollary 4.8. (1) Let u ∈ H2(Ω) ∩ H1
0 (Ω), f ∈ L2(Ω) and K ∈ W 1,∞(Ω).

Then

‖uh − uh‖1 . h‖u‖2.(26)

(2) Under the assumption (A0), let u ∈ H3(Ω) ∩ H1
0 (Ω), f ∈ H1(Ω) and

K ∈W 2,∞(Ω). Then

‖uh − uh‖1 . h2‖u‖3.(27)

For uh ∈ V h, one obtains the following lemma.

Lemma 4.9. Let u ∈ H2(Ω) ∩ H1
0 (Ω) and uh ∈ Vh be the exact and finite

element solutions of problem (2), respectively. Then

‖u− uh‖1 . h|u|2, ‖u− uh‖0 . h2|u|2.

By Corollary 4.8 and Lemma 4.9, noticing that ‖u− uh‖0 ≤ ‖u− uh‖1, we
can obtain the following result.

Theorem 4.10. (1) Let u ∈ H2(Ω) ∩H1
0 (Ω), f ∈ L2(Ω) and K ∈ W 1,∞(Ω).

Then
‖u− uh‖1 . h‖u‖2 .

(2) Under the assumption (A0), let u ∈ H3(Ω) ∩ H1
0 (Ω), f ∈ H1(Ω) and

K ∈W 2,∞(Ω). Then
‖u− uh‖0 . h2‖u‖3.

We will estimate the corresponding error in another norm.
Similar to the deriving of Lemma 4.7, one can obtain the following lemma.

Lemma 4.11. (1) Let u ∈ W 2,∞(Ω) ∩H1
0 (Ω), f ∈ L2(Ω) and K ∈ W 1,∞(Ω).

Then
|a(uh − uh, v)| . h(‖f‖0,∞ + ‖u‖2,∞)‖v‖1, ∀ v ∈ Vh.

(2) Under the assumption (A0), let u ∈ W 3,∞(Ω) ∩H1
0 (Ω), f ∈ W 1,∞(Ω)

and K ∈W 2,∞(Ω). Then

|a(uh − uh, v)| . h2(‖f‖1,∞ + ‖u‖3,∞)‖v‖1, ∀ v ∈ Vh.

Corollary 4.12. Assume that u ∈ W 2,∞(Ω) ∩ H1
0 (Ω) and uh ∈ Vh are the

exact and finite element solutions of problem (2), respectively. Then

‖u− uh‖0,∞ . h2|lnh|‖u‖2,∞, ‖u− uh‖1,∞ . h‖u‖2,∞.

Let ghz , ∂lg
h
z ∈ Vh be the discrete Green function and the derivative-discrete

Green function along l-direction, l = x1, x2, x3, respectively, i.e.,

a(ghz , v) = v(z), a(∂lg
h
z , v) = ∂lv(z), ∀ v ∈ Vh.

One can see that

‖ghz ‖1 ≤ c1, ‖∂lghz ‖1 = c2|lnh|, l = x1, x2, x3,

where c1 and c2 are constants.



774 CUNYUN NIE AND MIN TAN

Combining Lemma 4.11 with Corollary 4.12, by the discrete Green func-
tion and the derivative-discrete Green function, one can obtain the following
estimates.

Theorem 4.13. (1) Let u ∈ W k,∞(Ω) ∩ H1
0 (Ω) (k = 2, 3), f ∈ L2(Ω) and

K ∈W 1,∞(Ω). Then

‖u− uh‖0,∞ . h(‖f‖0,∞ + ‖u‖2,∞),

‖u− uh‖1,∞ . h|lnh|(‖f‖0,∞ + ‖u‖3,∞).

(2) Under the assumption (A0), let u ∈ W k,∞(Ω) ∩ H1
0 (Ω) (k = 2, 3),

f ∈W 1,∞(Ω) and K ∈W 2,∞(Ω). Then

‖u− uh‖1,∞ . h(‖f‖1,∞ + ‖u‖2,∞),

‖u− uh‖0,∞ . h2|lnh|(‖f‖1,∞ + ‖u‖3,∞).

Finally, we present the superconvergence result.

Theorem 4.14. Let Ωh be quasi-uniform and regular and u ∈ H3(Ω)∩H1
0 (Ω).

Then

(28) ‖∇u− Q̂h∇uh‖0 . h2‖u‖3,

where Q̂h is defined by (1).

Proof. By Corollary 2,
‖uh − uh‖1 . h2‖u‖3.

Applying the triangle inequality and the following result [7, 8, 12, 15]

‖∇u− Q̂h∇uh‖0 . h2‖u‖3,
we can obtain (28). �

5. Numerical experiments

In this section, we give some numerical experiments to test the results in
Section 4.

Firstly, we take Ω = (0, 1)3 and its uniform and nonuniform tetrahedron
grids (see Figure 1(a) and (b)). Let ni (i = 1, 2, 3) be the partition number
along xi axis, respectively. Let u(x) = sin(πx1) sin(πx2) sin(πx3) be the exact
solution of problem (2). We consider the coefficient K(x) in two cases

K(x) =

 1.00 0.25 0.35
0.25 2.00 0.45
0.35 0.45 3.00


and

K(x) =

 1.00 + δ 0.25δ 0.35δ
0.25δ 2.00 + δ 0.45δ
0.35δ 0.45δ 3.00 + δ

 ,

where δ(x) = x1 + x2 + x3.
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The results from Table 1 to Table 4 are for the basic convergent estimations
in L2 norm, L∞ norm and H1 norm. The PCG methods [3, 25, 27, 28, 29] are
used to solve the corresponding discrete systems, and improve the efficiency of

computation. In tables, γk = ‖u−u2h‖k
‖u−uh‖k (k = 0, 1,∞) and n = ni (i = 1, 2, 3).

Table 1. Results for the problem with constant coefficient on
uniform grids

n ‖u− uh‖0 γ0 ‖u− uh‖∞ γ∞ ‖u− uh‖1 γ1
8 4.747e-3 1.295e-2 4.856e-1
16 1.057e-3 4.4 3.129e-3 4.0 2.436e-1 2.0
32 2.504e-4 4.2 8.036e-4 4.0 1.219e-1 2.0
64 6.197e-5 4.0 2.012e-4 4.0 6.099e-2 2.0

Table 2. Results for the problem with constant coefficient on
nonuniform grids

n ‖u− uh‖0 γ0 ‖u− uh‖∞ γ∞ ‖u− uh‖1 γ1
8 6.181e-3 1.283e-2 5.024e-1
16 1.599e-3 4.4 3.519e-3 3.6 2.541e-1 1.9
32 3.901e-4 4.2 9.312e-4 6.7 1.270e-1 2.0
64 9.789e-5 4.0 2.500e-4 3.7 6.633e-2 2.0

Table 3. Results for the problem with variant coefficient on
uniform grids

n ‖u− uh‖0 γ0 ‖u− uh‖∞ γ∞ ‖u− uh‖1 γ1
8 4.838e-3 1.093e-2 4.845e-1
16 1.075e-3 4.0 2.711e-3 4.0 2.434e-1 2.0
32 2.556e-4 4.0 6.570e-4 4.1 1.219e-1 2.0
64 6.237e-5 4.0 1.530e-4 4.2 6.089e-2 2.0

Table 4. Results for the problem with variant coefficient on
nonuniform grids

n ‖u− uh‖0 γ0 ‖u− uh‖∞ γ∞ ‖u− uh‖1 γ1
8 5.878e-3 1.549e-2 5.006e-1
16 1.444e-3 3.9 4.423e-3 3.5 2.538e-1 1.9
32 3.560e-4 4.0 1.229e-3 6.6 1.274e-1 2.0
64 8.724e-5 4.0 3.321e-4 3.7 6.570e-2 1.9

From the above four tables, we see that the SFVE solution is of optimal
convergent order.
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Next, we present numerical results for superconvergence in Tables 5 and
6, where ∇ũh(Xi) is the modified value of ∇uh(Xi), i.e., it is defined as the

average gradient of two neighboring geometry-symmetric elements. Here γ̃
′

1 =
‖∇u−∇ũ2h‖0
‖∇u−∇ũh‖0 .

Table 5. Superconvergence results for the problem with con-
stant coefficient

n ‖∇u−∇ũh‖0 γ
′
1 ‖∇u−∇ũh‖0 γ

′
1

uniform grid nonuniform grid

8 1.377e-1 1.401e-1
16 3.411e-2 4.0 3.611e-2 3.9
32 8.567e-3 4.0 9.288e-3 3.9
64 2.187e-3 3.9 2.456e-3 3.8

Table 6. Superconvergence results for the problem with vari-
ant coefficient

n ‖∇u−∇ũh‖0 γ
′
1 ‖∇u−∇ũh‖0 γ

′
1

uniform grid nonuniform grid

8 1.395e-1 1.444e-1
16 3.458e-2 4.0 3.603e-2 4.0
32 8.556e-3 4.0 9.306e-3 3.9
64 2.210e-3 3.9 2.404e-3 3.9

From Table 5 and Table 6, one sees that the SFVE flux is super-convergent
at nodes when grids are quasi-uniform and regular.

6. Summary and conclusions

We have developed a new finite volume element scheme for a self-adjoint el-
liptic boundary-value problem on tetrahedron grids. The new scheme preserves
the PDEs’ symmetry, which is helpful to solve the corresponding discrete sys-
tem. We have proved that the approximate solution is of optimal convergent
order and the SFVE flux is of superconvergent. Numerical experiments confirm
the theoretical results.

In the future, we intent to investigate the corresponding SFVE scheme for
parabolic problems on tetrahedron grids and apply it to some real problems.
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