Browse > Article
http://dx.doi.org/10.11568/kjm.2017.25.3.405

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS  

Kim, Hongchul (Department of Mathematics Gangneung-Wonju National University)
Publication Information
Korean Journal of Mathematics / v.25, no.3, 2017 , pp. 405-435 More about this Journal
Abstract
We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.
Keywords
shape control; sensitivity analysis; optimal design; Navier-Stokes equations; drag minimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Rousselet, Shape Design Sensitivity of a Membrane, J. Optim. Theory and Appl., 40 (1983), 595-623.   DOI
2 J. Saut and R. Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values, Indiana Univ. Math. Jour., 29 (1980), 427-446.   DOI
3 D. Serre, Equations de Navier-Stokes stationnaires avec donnees peu regulieres, Ann. Sci. Scuola Norm. Sup. Pisa, Ser., IV (1983), 543-559.
4 J. Simon, Variations with respect to domain for Neumann conditions, in IFAC Control of Distributed Parameter Systems, Los Angeles, CA, 395-399, 1986.
5 J. Simon, Differentiation on a Lipschitz manifold, in Lecture Notes in Control and Information Sciences 114, A. Bermudez (Ed.), Springer-Verlag, Berlin, 277-283, 1987.
6 J. Simon, Domain variation for drag in Stokes flow, in Lecture Notes in Control and Information Sciences, 159, X. Li and J. Yang (Eds.), Springer-Verlag, Berlin, 28-42, 1990.
7 J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verlag, Berlin, 1992.
8 R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
9 O. Pironneau, On optimal design in fluid mechanics, J. Fluid Mech., 64 (1974), 97-110.   DOI
10 J. Zolesio, The material derivative (or speed ) method for shape optimization, in Optimization of Distributed Parameter Structures, E. Haug and J. Cea (Eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1005-1048, 1981.
11 I. Babuska, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179-192.   DOI
12 L. Cattabriga, Su un Problema al Contorno Relative al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.
13 J. Cea, Conception optimale ou identification de formes, calcul rapide de la derivee directionelle de la fonction cout, Math. Model. Numer. Anal., 20 (1986), 371-402.   DOI
14 R. Correa and A. Seeger, Directional derivatives of a minimax function, Non-linear Analysis, Theory, Methods and Applications, 9 (1985), 13-22.   DOI
15 M. Delfour and J. Zolesio, Differentiability of a minmax and application to optimal control and design problems. Part I, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 204-219, 1987.
16 M. Delfour and J. Zolesio, Differentiability of a minmax and application to optimal control and design problems. Part II, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 220-229, 1987.
17 M. Delfour and J. Zolesio, Shape sensitivity analysis via minmax differentiability, SIAM J. Control and Optim., 26 (1988), 834-862.   DOI
18 M. Delfour and J. Zolesio, Anatomy of the shape Hessian, Ann. Matematica pura appl., IV (1991), 315-339.
19 M. Delfour and J. Zolesio, Structure of shape derivatives for non-smooth domains, J. Func. Anal., 104 (1992), 215-339.
20 V. Demyanov, Differentiability of a minimax function I, USSR Comput. Math. and Math. Phys., 8 (1968), 1-15.
21 V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
22 R. Glowinski and O. Pironneau, Toward the computation of minimum drag profiles in viscous laminar flow, Appl. Math. Model., 1 (1976), 58-66.   DOI
23 M. Gunzburger and L. Hou, Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal., 29 (1992), 390-424.   DOI
24 M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Model.Math. Anal. Numer., 25 (1991), 711-748.   DOI
25 M. Gunzburger and Honghul Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), 895-909.   DOI
26 Hongchul Kim, On the shape derivative in the domain inclusion, Kangweon-Kyungki Math. Jour., 10 (2002), 75-87.
27 Hongchul Kim, Penalized approach and analysis of an optimal shape control problem for the stationary Naver-Stokes equations, J. Korean Math. Soc., 38 (2001), 1-23.
28 V. Komkov, Sensitivity analysis in some engineering applications, in Lecture Notes in Math., 1086, V. Komkov (Ed.), Springer-Verlag, Berlin, 1-30, 1984.
29 O. Ladyzhenskaya, The Mathematical Theory of Incompressible Viscous Flows, Gordon and Breach, New York, 1969.
30 J. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Academic Press, London, 1986.
31 O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, Berlin, 1984.