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ABSTRACT

This paper presents the parameter design method for
the desired time response of hydraulic track motor system
of an industrial excavator. The dynamic responsc
depends upon many component parameters such as motor
displacement, spring constant, and various valve
coefficients. Most of them are to be determined to obtain
the desired response while some parameters are fixed, or
discrete for the off-the-shelf type components.

The parameters might be selected through repeated
simulations of the system once the system is
mathematically represented. This paper, however,
presents optimization technique to select two parameters
using a parameter optimization technique. The variational
approach is applied to the system equations which are
represented as state equations and from those system
equations derived are the adjoint equations. The
gradients for each parameter also are formed for the
iterations,

1. INTRODUCTION

The hydraulic track motor system is a travelling unit
of an excavating vehicle and it also keeps the vehicle
from overunning. The system consists mainly of several
components such as hydraulic motor, main control
valves(M. C. V), and the counter balance valves(C. B. V).
Figure 1. shows the hydraulic circuit diagram of the
system. The main control valve steered by the operator
confrols the flow and directions to the motor. The spool
in the conter balance valve moves very fast depending
upon the pressure built in the hydraulic line from the
motor to M. C. V. and has a function of preventing the
motor from overunning by blocking flow to the valve
effectively.

Many design parameters in these components govern
the dynamic response of the system. Desired dynamic
response may be possibly obtained by the use of repeated
simulations.  Such a method, however, does not give
good results and is not efficient for comparatively large
systems.  Therefore, an optimization method bhas been
seeked to select the design parameters effectively.

This paper presents a numerical optimization scheme
for the desired lime response of a particular state variable
which shows rapid changes with high natural [requency.
The variational approach was applied to derive the
gradients of the performance index which is the difference
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Fig. 1 Hydraulic Circuit Diagram

between the desired response and predicted one for the
state variable.
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2. PARAMETER DESIGN
2.1 System Modeling

Modeling is first needed to form the system
equations of the track motor system, Multiport
component concepts are used to model the system as
easily considered for an hydraulic system. The block
diagram can be obtained easily by using the mulGport
concept.

The system behavior can be simply described as
follows,
the hydraulic fluid flows through the M. C. V. to one
side of the track motor to start the motion. A remote
control valve is used to reduce the operating force of the
M. C. V. The valve characteristics makes following
lincarized flow equations :

Qi=u1-k1 P (2.1)
Q2= kz P2 (2.2)
Q3=k3 Ps+ks (P3-P2) (2.3)

where Q's are the flow rates, k’s are the valve
coefficients, w1 is the input to the system, P1 is the
pressure in the line from the M. C. V. to the track
motor, Pz is the pressure in the line from the C. B. V.

to the M. C. V,, P3 is in the line from the track motor
to C. B. V,, and Pg¢ is the pressure acting to the right

side of C. B. V.

The above equations can be written as state
equations if the Implicit Method is applied. That is, the
equations can be rewritten if both sides of the equations
are differentiated with respect to time.

Applying continuity to each fluid volume depicted in
Figure. 1 gives following equations,

Volume from M. C. V. to motor :

Pr=3=[Qi-ks (Pi-P)-Dr N1l @4

Volume from C. B. V. to M, C. V. :

Pz=-“g‘5‘[(03-02)*/€/(P2"P3)] (2.5)

Volume from motor to C. B, V. :

Py= <5=(Dr N1-Qs) @6)

Volume in left side of C. B. V. :

Pa= 5 ~[k; (Pi-Pa)-As v @7

Volume in right side of C. B, V. :

P5=—VE;[*k/ (P1-Pa)+Asvs) (28

where B is the bulk modulus of the fluid, V's are the
volume involved, D7 is the motor displacement, Nr is
the speed of motor, As is the area of the spool of C. B.
V., ks is its valve coefficient, and vs is the speed of the
spool.

Equation of motion of the spool of C. B. V. is written
as

. g A
bi= - Xt HE PPy (29)

where K is the spring constant of the spring in both
sides of the spool, M is the mass of the spool, and x,
is the displacement of the spool.

Equation of rotary motion for the rotating parts of
the track motor is also written as

Nr= =101 (Pi=P3)-Cp Dr wN1-C; Dr{ P~ Pyl
(2.10)
where N7t is the rotating speced of the motor, Jr is the
mass moment of inertia of rotating parts, Cp is the drag
coefficient of the motor, it is the viscosity of the fluid,
and Cy is the friction coefficient of the motor.
Also, definitions relating the speed and displacement
of the spool and the motor are written as
Xs= Us (2.11)
6r= Nt (2.12)

respectively, where 07 is the angular displacement of the
motor.
The parameters such as Dr, K,, M, A, and

other design parameters govern the system
characteristics.  However, how much they givern the
system should be investigated.

2.2 Variational Approach
The above equations derived so far form a set of
state equations and can be represented as

Fi =xi-Adxi, p)), i=1,2,+9 (2.13)

where x's are the state variables, F's have zero value,
and p’s are the parameters to be selected.
It is noticed that x and y are the functions of p.

Once a desired time response is defined mathematically,
the objeclive funclional can be written as

1= [ fixipat 214

where f(xi,p;)= 1xas-x1] because the goal is to midimize

the error between the desired reponse Xxdesand the

predicted reponse x) over an interested time interval.
The state variable xi1 means the pressure Pi acling in

the line from M. C. V. to the motor.
By perturbing the variables, derivative-like conditions

can be derived for each variable. Perturbed variables x;,

—E,- can be defined as

xi = xi(py), i=1,2,9 (2.15)

Pi = Piten Yo, =12 (2.16)
where p; is a certain parameter that can minimize the
funictional I, the value of £, is a small scalar, and v, is

a function with continuous second derivatives.
An augmented integral is formed by taking into
account Equation (2.13) as constraints, ie.,

t g
1= 1 fxip s 20F 1 at @17
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where ); is the Lagrangian multiplier for the constraint
equations.  Since the integrand of Equation (2.17) is
dependent on the function x; and pj, the the necessary
conditions for an optimum can be obtained by setting the
derivatives of the functional I(p) zero with respect to
each ¢!

di{p) _ _of aFy
ds = op, * é:x)‘k 2p; (2.18)

Reducing the above equation yields to the following
equations

aof oFx  _dX _

o é‘i )‘k.—ax; —a - 0 (219
of aFy .

30 + k% Ak op; 0 (2.20)

Equation (2.19) can be rewritten as

d X _of 3Fy
dr - ox; + é;ixk'—_axl_ (2.21)

which are called adjoint equations and can be solved by
numerical integrations. Equation (2.20), however, is used
for the gradient evaluation.

2.3 Adjoint Equations
Applying the approach discussed so far to Equations
(2.4) through (2.12) yields following adjoint equations:

Ki=die b (lea k) -ha g ky=Ae = Dr{1-C)

1 for xi 2 Xges

where d; ={ -1 for x1 < %ae (2.22)
Xz=Xz—%(kA*kz-‘k/)'Xs—‘%'ka-Xs-‘%k; (2.23)
Xs=xz—‘j%(-k.,)mvlskuxa—jlr—ur(l~c,) 2.24)
Kemh ke kg kb 225)
K= ke hs ke 1‘3;5 2.26)
Xa==ha g ks ks ks g Ao 22)
X2 hg = As-hs i A-he 228)

Xa=ht—‘%‘0r-)‘3—‘%l)r*h% CaDru-Xe (2.29)

Xe=0 (2.30)

Also the left hand side of Equation (2.20) can be
rewritten as gradients,

2l(p) = af aFy
ap; ap; ?951 Mo 231

Equation (2.31) describe the change of the objective
functional as the parameters change in an iterative
manner.  Evaluation of (231) gives the direction of
optimization for each parameter. A steepest descent
method can be applied to improve convergence.

The optimization algorithm can be described as
follows,

(1) Choose the parameters to be selected.

(2) Initilize the parameter values with feasible values.

(3) Solve for the state variables using the state
equations.

(4) Solve for the Lagrangian multipliers using the
adjoint equations.

(5) Evaluate the gradients using Equation (2.31).

(6) Evaluate the next value of parameters using the
steepest descent method,

al

apj ’

pin=pi+ (2.32)

(7) Check to see if the parameters converge.
(8) Repeat the steps (3) through (7) if not converged.

The optimization procedure is shown in Figure 2.
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l SOLVE FOR STATE VARIABLES I

SOLVE FOR
LAGRANGIAN MULTIPLIERS

l
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NO

PARAMETERS CONVERGED ?
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END

Fig. 2 Optimization Procedure

Two distinctive parameters are chosen for the design
and they are motor displacement and spring constant.

They are defined p1 and p2, respectively.  Equation
(2.31) can then be written as
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al =\ 8 NT*)»:;"‘%!—NT

api -V?

+x871T—[ (1- X Py-Po-Ca uNT) 2.33)
-7 SRS B
apz = )»7 Ks Xs (234)

As discussed earlier, the state equations should be solved

first before solving the adjoint equations since Eguations
(2.33) and (2.34) contain state variables.

3. RESULTS AND CONCLUSIONS
3.1 Results

The desired time response of Pi was given as a
very fast and high damped system response. Initial
values for two parameters to be optimized were given 5
m¥/rad, 80 N/m respectively. They are of course far
from the optimal values. Other fundamental parameters
were given fixed as follows,

B = 116x108 Kg/m® 3.1
Ca = 1x10°  (dimensionless) (3.2)
Cr= 02 (dimensionless) (3.3)
A = 314<107 m? (3.4)
M = 0.2 Kg (35
Jr = 30 Kg m? (3.6)

The input to the system was assumed as a step input.
Ringe-Kutta 4th order was used for the integrations both
for the state and the adjoint equations.

By repeating the procedure mentioned in the previous
section, it was obtained that the predicted response
converged to the desired response even though the initial
set of parameters was far from the optimal values.
Figure 3. shows the results. It shows that the
optimization enables the reponse move to the desired
response.
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Fig. 3 Time Reponses

3.2 Concluding Remarks

The optimization technique is applied to an hydraulic
track motor system and the results shows satisfactory
convergence. It saves calculation time compared to the
repeated simulations.  The use of conjugate gradient
method might be able to improve the speed of
convergence.

This optimization method can be applied to other
dynamic systems where the systems are represented as
state equations. It also can be used as a design tool
since less simluations are required.
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