• 제목/요약/키워드: additive (n, 2)-mapping

검색결과 23건 처리시간 0.023초

STABILITY OF ADDITIVE (n, 2)-MAPPINGS

  • Kang, Pyung-Lyun;Park, Chun-Gil
    • 충청수학회지
    • /
    • 제17권1호
    • /
    • pp.19-27
    • /
    • 2004
  • We define an additive (n, 2)-mapping, and prove the stability of additive (n, 2)-mappings.

  • PDF

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....

ON THE SOLUTION OF A MULTI-ADDITIVE FUNCTIONAL EQUATION AND ITS STABILITY

  • Park Won-Gil;Bae Jae-Hyeong
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.517-522
    • /
    • 2006
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the multi-additive functional equation $f(x1+x2,y1+y2,z1+z2)={\Sigma}_{1{\le}i,j,k{\le}2}\;f(x1,yj,zk)$.

ON AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION AND ITS STABILITY

  • PARK WON-GIL;BAE JAE-HYEONG;CHUNG BO-HYUN
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.563-572
    • /
    • 2005
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the additive-quadratic functional equation f(x + y, z + w) + f(x + y, z - w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w).

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • 대한수학회논문집
    • /
    • 제23권2호
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF