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ON STABILITY PROBLEMS WITH SHADOWING

PROPERTY AND ITS APPLICATION

Hahng-Yun Chu, GilJun Han, and Dong Seung Kang

Abstract. Let n ≥ 2 be an even integer. We investigate that if an odd
mapping f : X → Y satisfies the following equation

2 n−2Cn
2
−1rf

 n∑
j=1

xj

r

+
∑

ik∈{0,1}∑n
k=1 ik=n

2

rf

(
n∑

i=1

(−1)ik
xi

r

)

= 2 n−2Cn
2
−1

n∑
i=1

f(xi),

then f : X → Y is additive, where r ∈ R. We also prove the stability in
normed group by using shadowing property and the Hyers-Ulam stability
of the functional equation in Banach spaces and in Banach modules over

unital C∗-algebras. As an application, we show that every almost linear
bijection h : A → B of unital C∗-algebras A and B is a C∗-algebra

isomorphism when h( 2
s

rs
uy) = h( 2

s

rs
u)h(y) for all unitaries u ∈ A, all

y ∈ A, and s = 0, 1, 2, . . . .

1. Introduction

In 1940, the problem of stability of functional equations was originated by
Ulam [15] as follows: Under what condition does there exist an additive map-
ping near an approximately additive mapping?

The first partial solution to Ulam’s question was provided by D. H. Hyers [7].
Let X and Y be Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively.
Hyers showed that if a function f : X → Y satisfies the following inequality

∥ f(x+ y)− f(x)− f(y) ∥Y ≤ ϵ
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for all ϵ ≥ 0 and for all x, y ∈ X, then the limit

a(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ X and a : X → Y is the unique additive function such that

∥ f(x)− a(x) ∥Y ≤ ϵ

for any x ∈ X. Moreover, if f(tx) is continuous in t for each fixed x ∈ X, then
a is linear.

Hyers’ theorem was generalized in various directions. In particular, thirty
seven years after Hyers’ Theorem, Th. M. Rassias provided a generalization of
Hyers’ result by allowing for the first time in the subject of functional equations
and inequalities the Cauchy difference to be unbounded; see [11]. Gǎvruta [6]
provided a generalization of the Theorem of Th. M. Rassias.

Several functional equations have been investigated in [3], [4], [5]. Recently,
Bae and Park investigated that the generalized Hyers-Ulam-Rassias stability in
Banach modules over a C∗-algebra and unitary Banach algebra; see [1]. In [2],
Baak et al. introduced generalized additive functional equation and studied the
stability in Banach modules and isomorphisms between C∗-algebras. Recently,
Lee, Koh and Ku [10] investigated the stability via shadowing property with a
quadratic functional equation.

Let n be an even integer, and r ∈ R. In this paper, we investigate that a
mapping f : X → Y satisfies the following equation

2 n−2Cn
2 −1rf

 n∑
j=1

xj

r

+
∑

ik∈{0,1}∑n
k=1 ik=

n
2

rf

(
n∑

i=1

(−1)ik
xi

r

)

= 2 n−2Cn
2 −1

n∑
i=1

f(xi) .

First of all, we show that if above mapping f is odd, then it is additive.
Next, we prove the stability in normed group by using shadowing property.
By using the some results as in [2], we study the Hyers-Ulam stability of the
functional equation in Banach spaces and also in Banach modules over a unital
C∗-algebras. Also, its application, we show that every almost linear bijection
h : A → B of unital C∗-algebras A and B is a C∗-algebra isomorphism when
h( 2

s

rs uy) = h( 2
s

rs u)h(y) for all unitaries u ∈ A, all y ∈ A, and s = 0, 1, 2, . . . .
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2. Generalized additive mapping in several variables

Lemma 2.1. Let n ≥ 2 be an even integer number, and let X,Y be vector
spaces. A given odd mapping f : X → Y defined by

(2.1)

2 n−2Cn
2 −1rf

 n∑
j=1

xj

r

+
∑

ik∈{0,1}∑n
k=1 ik=

n
2

rf

(
n∑

i=1

(−1)ik
xi

r

)

= 2 n−2Cn
2 −1

n∑
i=1

f(xi),

is additive, for all x1, . . . , xn ∈ X.

Proof. Since f is odd, we have f(0) = 0.
Now, by letting x1 = x, x2 = y, and x3 = · · · = xn = 0, we get

2 n−2Cn
2 −1rf

(
x+ y

r

)
+n−2 Cn

2
rf

(
x+ y

r

)
+n−2 Cn

2 −1rf

(
−x+ y

r

)
+ n−2Cn

2 −1rf

(
x− y

r

)
+n−2 Cn

2 −2rf

(
−x− y

r

)
= 2 n−2Cn

2 −1(f(x) + f(y))

for all x, y ∈ X. Since f is odd and n−2Cn
2 −2 =n−2 Cn

2
, we have

2 n−2Cn
2 −1rf

(
x+ y

r

)
= 2 n−2Cn

2 −1(f(x) + f(y))

for all x, y ∈ X. Then we get

rf

(
x+ y

r

)
= f(x) + f(y)

for all x, y ∈ X. Hence we have rf(xr ) = f(x), when y = 0. Thus f(x + y) =

rf(x+y
r ) = f(x) + f(y), that is, f is additive. □

3. Stability using shadowing property

In this section, we will investigate the stability of the given functional equa-
tion based on the ideas from dynamical systems. Before we proceed, we would
like to introduce some basic definitions concerning shadowing and key concepts
to establish the stability; see [14].

Let us fix some notations which will be used throughout this section. First
of all, we will fix r = 1, that is, we will investigate the generalized mappings
of 1-type. Also, we denote N the set of all nonnegative integers, X a complete
normed space and B(x, s) the closed ball centered at x with radius s and let
ϕ : X → X be given.
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Definition 3.1. Let δ ≥ 0. We say that a sequence (xk)k∈N is a δ-pseudoorbit
(for ϕ) if

d(xk+1, ϕ(xk)) ≤ δ for k ∈ N.
A 0-pseudoorbit is called an orbit.

Definition 3.2. Let s,R > 0 be given. We say that ϕ : X → X is locally
(s,R)-invertible at x0 ∈ X if

∀y ∈ B(ϕ(x0), R), ∃!x ∈ B(x0, s) : ϕ(x) = y.

If ϕ is locally (s,R)-invertible at each x ∈ X, then we say that ϕ is locally
(s,R)-invertible.

For a locally (s,R)-invertible function ϕ, we define a function

ϕ−1
x0

: B(ϕ(x0), R) → B(x0, s)

in such a way that ϕ−1
x0

(y) denote the unique x from the above definition which
satisfies ϕ(x) = y. Moreover, we put

lipRϕ
−1 := sup

x0∈X
lip(ϕ−1

x0
),

where lip(ϕ−1
x0

) is the lipschitz constant of ϕ−1
x0

.

Theorem 3.3 ([13]). Let l ∈ (0, 1), R ∈ (0,∞) be fixed and let ϕ : X → X
be locally (lR,R)-invertible. We assume additionally that lipR(ϕ

−1) ≤ l. Let
δ ≤ (1 − l)R and let (xk)k∈N be an arbitrary δ-pseudoorbit. Then there exists
a unique y ∈ X such that

d(xk, ϕ
k(y)) ≤ lR for k ∈ N.

Moreover,

d(xk, ϕ
k(y)) ≤ lδ

1− l
for k ∈ N.

Let (X, ∗) be a semigroup. We denote kx to be x ∗ · · · ∗ x︸ ︷︷ ︸
k

, where x ∈ X

and k ∈ N. Then the mapping || · || : X → R is called a (semigroup) norm if it
satisfies the following properties:

(1) for all x ∈ X, ||x|| ≥ 0.
(2) for all x ∈ X, k ∈ N, ||kx|| = k||x||.
(3) for all x, y ∈ X, ||x||+ ||y|| ≥ ||x ∗ y|| and also the equality holds when

x = y, where ∗ is the binary operation on X.

Note (X, ∗, || · ||) is called a normed group if X is a group with an identity
e, and it additionally satisfies that ||x|| = 0 if and only if x = e.

We say that (X, ∗, || · ||) is a normed (semi)group if X is a (semi)group with
a norm || · ||. Now, given an Abelian group X and n ∈ Z, we define the mapping
[nX ] : X → X by the formula

[nX ](x) := nx for x ∈ X.
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Also, we are going to need the following result. In recent years, Lee et al.
showed the next lemma by using Theorem 3.3.

Lemma 3.4 ([10]). Let l ∈ (0, 1), R ∈ (0,∞), δ ∈ (0, (1 − l)R), ε > 0,m ∈
N, n ∈ Z. Let G be a commutative semigroup, X a complete Abelian metric
group. We assume that the mapping [nX ] is locally (lR,R)-invertible and that
lipR([nX ]−1) ≤ l. Let f : G → X satisfy the following two inequalities∣∣∣∣∣∣ N∑

i=1

aif(bi1x1 + · · ·+ binxn)
∣∣∣∣∣∣ ≤ ε for x1, . . . , xn ∈ G,

||f(mx)− nf(x)|| ≤ δ for x ∈ G,

where all ai are endomorphisms in X and bij are endomorphisms in G. We
assume additionally that there exists K ∈ {1, . . . , N} such that

(3.1)
K∑
i=1

lip(ai)δ ≤ (1− l)R, ε+
N∑

i=K+1

lip(ai)
lδ

1− l
≤ lR.

Then there exists a unique function F : G → X such that

F (mx) = nF (x) for x ∈ G,

and

||f(x)− F (x)|| ≤ lδ

1− l
for x ∈ G.

Moreover, F satisfies

N∑
i=1

aiF (bi1x1 + · · ·+ binxn) = 0 for x1, . . . , xn ∈ G.

Now, we are ready to prove our functional equations as follows:

(3.2)

Df(x1, . . . , xn) := 2 n−2Cn
2 −1f

 n∑
j=1

xj


+

∑
ik∈{0,1}∑n
k=1 ik=

n
2

f

(
n∑

k=1

(−1)ikxk

)

− 2 n−2Cn
2 −1

n∑
i=1

f(xi)

for all x1, . . . , xn ∈ G.

Theorem 3.5. Let R > 0, let n ≥ 3 be an even integer, G a commutative
semigroup, and let X be a complete normed Abelian group. Suppose that [nX ]

is locally (R4 , R)-invertible and lipR([nX ]−1) ≤ 1
4 . Let ε ≤ 3(n−2)

4n(5n−4)R and let

f : G → X be a function such that

(3.3) ||Df(x1, . . . , xn)|| ≤ ε
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for all x1, . . . , xn, x ∈ G. Then there exists a unique function F : G → X such
that

F (nx) = nF (x),

DF (x1, . . . , xn) = 0,

||F (x)− f(x)|| ≤ n

6(n− 2)n−2Cn
2 −1

ε

for all x1, . . . , xn, x ∈ G.

Proof. By letting x1 = · · · = xn = 0 in the equation (3.3), we have

||n− 2

2
nCn

2
f(0)|| ≤ ε,

that is, ||f(0)|| ≤ 2ε
(n−2)nCn

2

. Now, by putting xk = x (k = 1, . . . , n) in (3.3),

the inequality ||f(0)|| ≤ 2ε
(n−2)nCn

2

implies

||2n−2Cn
2 −1f(nx)− 2nn−2Cn

2 −1f(x)|| ≤
n

n− 2
ε,

that is, we have ||f(nx) − nf(x)|| ≤ n
2(n−2)n−2Cn

2
−1

ε for all x ∈ G. To apply

Lemma 3.4 for the function f, we may let

l =
1

4
, δ =

n

2(n− 2)n−2Cn
2 −1

ε,K =n Cn
2
,

a1 = · · · = aK = idX ,

aK+1 = · · · = aK+n = −2n−2Cn
2 −1idX ,

aN = 2n−2Cn
2 −1idX , where N = K + n+ 1.

Then we have

δ =
n

2(n− 2)n−2Cn
2 −1

ε

≤ n

2(n− 2)n−2Cn
2 −1

· 3(n− 2)

4n(5n− 4)
R

≤ 3

4
R = (1− l)R,

K∑
i=1

lip(ai)δ = K · n

2(n− 2)n−2Cn
2 −1

ε

≤ 2(n− 1)

n(5n− 4)
· 3
4
R

≤ 3

4
R = (1− l)R,
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and

ε+

N∑
i=K+1

lip(ai)
lδ

1− l
= ε+

1

3
· n(n+ 1)

n− 2
ε

≤ n2 + 4n− 6

4n(5n− 4)
R

≤ 1

4
R = lR.

Hence all conditions of Lemma 3.4 are satisfied, and thus we conclude that
there exists a unique function F : G → X such that

(3.4) F (nx) = nF (x),

DF (x, . . . , xn) = 0

and also we have

||f(x)− F (x)|| ≤ lδ

1− l
=

n

6(n− 2)n−2Cn
2 −1

ε for all x1, . . . , xn, x ∈ G.
□

Theorem 3.6. Let R > 0, let n ≥ 3 be an even integer, G a commutative semi-
group, X a complete normed Abelian group, and let f : G → X be a function.
Suppose that [(n−1Cn

2
)X ] is locally ( R

n−1Cn
2

, R)-invertible, [(12 (n− 2)nCn
2
)X ] is

locally ( 2R
(n−2)nCn

2

, R)-invertible, and [(2n−2Cn
2 −1)X ] is locally ( R

2n−2Cn
2

−1
, R)-

invertible. Then f satisfies the following equation

(3.5) Df(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ G if and only if f is a Cauchy additive odd function.

Proof. We are going to prove that f as in the equation (3.5) is a Cauchy additive
mapping. By letting xk = 0 (k = 1, . . . , n) in the equation (3.5), we have

n− 2

2
nCn

2
f(0) = 0.

By the uniqueness of the local division by n−2
2 nCn

2
, we get f(0) = 0.

Also, setting x1 = x, xk = 0 (k = 2, . . . , n) and by the uniqueness of the
local division by n−1Cn

2
, the equation f(0) = 0 implies that

2 n−2Cn
2 −1f(x) +n−1 Cn

2
f(x) +n−1 Cn

2 −1f(−x) = 2 n−2Cn
2 −1f(x),

that is, we have −f(x) = f(−x) for all x ∈ G.
Now, by letting x1 = x, x2 = y, and x3 = · · · = xn = 0, we get

2 n−2Cn
2 −1f(x+ y) +n−2 Cn

2
f(x+ y) +n−2 Cn

2 −1f(−x+ y)

+ n−2Cn
2 −1f(x− y) +n−2 Cn

2 −2f(−x− y)

= 2 n−2Cn
2 −1(f(x) + f(y))

for all x, y ∈ X.
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By the uniqueness of the local division by 2n−2Cn
2 −1 and odd property, we

have

f(x+ y) = f(x) + f(y)

for all x, y ∈ G, that is, f is a Cauchy additive mapping, as desired. Conversely,
suppose that f is a Cauchy additive odd function. Then

2 n−2Cn
2 −1f

 n∑
j=1

xj

+
∑

ik∈{0,1}∑n
k=1 ik=

n
2

f

(
n∑

i=1

(−1)ikxi

)

= 2 n−2Cn
2 −1f

 n∑
j=1

xj

+ 0

= 2 n−2Cn
2 −1 (f(x1) + · · ·+ f(xn))

= 2 n−2Cn
2 −1

n∑
i=1

f(xi)

for all x1, . . . , xn ∈ G. Thus f satisfies the equation (3.5). □

The direct application of Theorems 3.5 and 3.6 yields the following corollary.

Corollary 3.7. Let R > 0, let n ≥ 3 be an even integer, G an Abelian group,

and X a complete normed Abelian group. Let ε ≤ 3(n−2)
4n(5n−4)R be arbitrary

and f : G → X a function satisfying the equation (3.3). Suppose that [nX ]
is locally (R4 , R)-invertible with lipR([nX ]−1) ≤ 1

4 , and [(n−1Cn
2
)X ] is locally

( R
n−1Cn

2

, R)-invertible, [(12 (n − 2)nCn
2
)X ] is locally ( 2R

(n−2)nCn
2

, R)-invertible,

and [(2n−2Cn
2 −1)X ] is locally ( R

2n−2Cn
2

−1
, R)-invertible. Then there exists a

Cauchy additive odd function F : G → X such that

||F (x)− f(x)|| ≤ n

6(n− 2)n−2Cn
2 −1

for all x ∈ G.

4. On Hyers-Ulam-Rassias stabilities

From now on, let X be a normed vector space with norm ∥ · ∥X and Y be
a Banach space with norm ∥ · ∥Y . Let n ≥ 2 be even.
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For the given mapping f : X → Y, we define

(4.1)

Df(x1, . . . , xn) := 2 n−2Cn
2 −1rf

 n∑
j=1

xj

r


+

∑
ik∈{0,1}∑n
k=1 ik=

n
2

rf

(
n∑

k=1

(−1)ik
xk

r

)

− 2 n−2Cn
2 −1

n∑
i=1

f(xi)

for all x1, . . . , xn ∈ X.

Theorem 4.1. Let n ≥ 2 be even and let f : X → Y be an odd mapping for
which there exists a function ϕ : Xn → [0,∞) such that

(4.2) ϕ̃(x1, . . . , xn) :=

∞∑
j=0

(r
2

)j
ϕ

((
2

r

)j

x1, . . . ,

(
2

r

)j

xn

)
< ∞,

(4.3) ∥ Df(x1, . . . , xn) ∥Y ≤ ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ X. Then there exists a unique generalized additive mapping
L : X → Y such that

(4.4) ∥ f(x)− L(x) ∥Y ≤
1

4 ·n−2 Cn
2 −1

ϕ̃(x, x, 0, . . . , 0)

for all x ∈ X.

Proof. By letting x1 = x2 = x and xj = 0 (j = 3, . . . , n) in (4.3), since f is an
odd mapping, we have∥∥∥∥2 n−2Cn

2 −1rf

(
2

r
x

)
− 4n−2Cn

2 −1f(x)

∥∥∥∥
Y

≤ ϕ(x, x, 0, . . . , 0)

for all x ∈ X. Then we obtain that

(4.5)

∥∥∥∥f(x)− r

2
f

(
2

r
x

)∥∥∥∥
Y

≤ 1

4 ·n−2 Cn
2 −1

ϕ(x, x, 0, . . . , 0)

for all x ∈ X.
From the equation (4.5), we have∥∥∥∥∥(r2)d f

((
2

r

)d

x

)
−
(r
2

)d+1

f

((
2

r

)d+1

x

)∥∥∥∥∥
Y

≤
(r
2

)d
· 1
4
· 1

n−2Cn
2 −1

ϕ

((
2

r

)d

x,

(
2

r

)d

x, 0, . . . , 0

)
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for all x ∈ X and all positive integer d. Hence we get

(4.6)

∥∥∥∥∥(r2)s f
((

2

r

)s

x

)
−
(r
2

)d
f

((
2

r

)d

x

)∥∥∥∥∥
Y

≤ 1

4
· 1

n−2Cn
2 −1

d−1∑
j=s

(r
2

)j
ϕ

((
2

r

)j

x,

(
2

r

)j

x, 0, . . . , 0

)

for all x ∈ X and all positive integers s and d with s < d. Hence we may
conclude that the sequence {( r2 )

sf((2r )
sx)} is a Cauchy sequence. Hence the

sequence converges in Y for all x ∈ X. Thus we may define a mapping L : X →
Y via

L(x) = lim
s→∞

(r
2

)s
f

((
2

r

)s

x

)
for all x ∈ X. Since f is odd, so is L. Then by the definition of DL(x1, . . . , xn)
and (4.3),

∥ DL(x1, . . . , xn) ∥Y ≤ lim
s→∞

(
r

2
)sϕ((

2

r
)sx1, . . . , (

2

r
)sxn) = 0

for all x1, . . . , xn ∈ X. That is, DL(x1, . . . , xn) = 0. By Lemma 2.1, the map-
ping L : X → Y is a generalized additive mapping of r-type. Also, letting
s = 0 and passing the limit d → ∞ in (4.6), we get the equation (4.4).

Now, let L′ : X → Y be another generalized additive mapping of r-type
satisfying (4.4). Then we have

∥L(x)− L′(x)∥Y =
(r
2

)s ∥∥∥∥L((2

r

)s

x

)
− L′

((
2

r

)s

x

)∥∥∥∥
Y

≤
(r
2

)s(∥∥∥∥L((2

r

)s

x

)
−f

((
2

r

)s

x

)∥∥∥∥
Y

+

∥∥∥∥L′
((

2

r

)s

x

)
−f

((
2

r

)s

x

)∥∥∥∥
Y

)
=

1

2

1

n−2Cn
2 −1

∞∑
j=s

(r
2

)j
ϕ

((
2

r

)j

x,

(
2

r

)j

x, 0, . . . , 0

)
→ 0

for all x ∈ X as s → ∞. Thus we may conclude that such a generalized additive
mapping L is unique. □

Theorem 4.2. Let n ≥ 2 be even and let f : X → Y be an odd mapping for
which there exists a function ϕ : Xn → [0,∞) such that

(4.7) ϕ̃(x1, . . . , xn) :=

∞∑
j=1

(
2

r

)j

ϕ

((r
2

)j
x1, . . . ,

(r
2

)j
xn

)
< ∞,

(4.8) ∥ Df(x1, . . . , xn) ∥Y ≤ ϕ(x1, . . . , xn)
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for all x1, . . . , xn ∈ X. Then there exists a unique generalized additive mapping
L : X → Y such that

(4.9) ∥ f(x)− L(x) ∥Y ≤
1

4 n−2Cn
2 −1

ϕ̃(x, x, 0, . . . , 0)

for all x ∈ X.

Proof. Replacing x by r
2x in the equation (4.5), we have∥∥∥∥f(x)− 2

r
f
(r
2
x
)∥∥∥∥

Y

≤ 1

4 n−2Cn
2 −1

2

r
ϕ
(r
2
x,

r

2
x, 0, . . . , 0

)
.

The remains follow from the proof of Theorem 4.1. □

5. Isomorphisms between unital C∗-algebras

In this section, we are going to investigate C∗-algebra isomorphisms between
a unital C∗-algebra. Hence, first of all, we will prove that the Hyers-Ulam
stability of the given functional equation below in a Banach module over a
unital C∗-algebra.

Assume that A is a unital C∗-algebra with norm | · | and unital group U(A),
and that X and Y are left Banach modules over a unital C∗-algebra A with
norms || · ||X and ∥ · ∥Y , respectively.

Given a mapping f : X → Y, we set

Duf(x1, . . . , xn) := 2 n−2Cn
2 −1r f

 n∑
j=1

uxj

r


+

∑
ik∈{0,1}∑n
k=1 ik=

n
2

r f

(
n∑

k=1

(−1)ik
uxk

r

)

− 2 n−2Cn
2 −1

n∑
i=1

u f(xi)

for all u ∈ U(A) and all x1, . . . , xn ∈ X.

Theorem 5.1. Let f : X → Y be an odd mapping for which there exists a
function ϕ : Xn → [0,∞) such that

(5.1) ϕ̃(x1, . . . , xn) :=

∞∑
j=0

(r
2

)j
ϕ

((
2

r

)j

x1, . . . ,

(
2

r

)j

xn

)
< ∞,

(5.2) ∥ Duf(x1, . . . , xn) ∥Y ≤ ϕ(x1, . . . , xn)

for all u ∈ U(A) and all x1, . . . , xn ∈ X. Then there exists a unique generalized
A-linear mapping L : X → Y such that

(5.3) ∥ f(x)− L(x) ∥Y ≤
1

4 ·n−2 Cn
2 −1

ϕ̃(x, x, 0, . . . , 0)
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for all x ∈ X.

Proof. Let u = 1 ∈ U(A). By Theorem 4.1, we know that there exists a unique
generalized additive mapping satisfying the equation (5.3) defined by

L(x) := lim
s→∞

rs

2s
f

(
2s

rs
x

)
for all x ∈ X. Also, L(x) is odd.

Now, by assumption for each u ∈ U(A), we get

||DuL(x, 0, . . . , 0)||Y = lim
s→∞

rs

2s

∥∥∥∥Duf

(
2s

rs
x, 0, . . . , 0

)∥∥∥∥
Y

≤ lim
s→∞

rs

2s
ϕ

(
2s

rs
x, 0, . . . , 0

)
= 0

for all x ∈ X. Also, we have

2n−2Cn
2 −1 rL

(u
r
x
)
+n−1 Cn

2 −1rL
(
−u

r
x
)
+n−1 Cn

2
rL
(u
r
x
)

= 2 n−2Cn
2 −1uL(x)

for all u ∈ U(A) and all x ∈ X. Since n−1Cn
2 −1 =n−1 Cn

2
, and L is odd and

additive function, we have

(5.4) rL
(u
r
x
)
= uL(x)

for all u ∈ U(A) and all x ∈ X.
Now, let a ∈ A and M an integer greater than 4|a|. Then

| a
M

| < 1

4
< 1− 2

3
=

1

3
.

By [8], there exist three elements u1, u2, u3 ∈ U(A) such that 3a
M = u1+u2+u3.

So by the equation (5.4), we have

L(ax) =
M

3
L
(
3
a

M
x
)
=

M

3
(L(u1x) + L(u2x) + L(u3x))

=
M

3
(u1 + u2 + u3)L(x) =

M

3
· 3 a

M
L(x) = aL(x)

for all a ∈ A and all x ∈ X. Hence

L(ax+ by) = L(ax) + L(by) = aL(x) + bL(y)

for all a, b ∈ A and all x, y ∈ X. Thus the unique generalized additive mapping
L : X → Y is an A-linear mapping. □

Now we are ready to prove the C∗-algebra isomorphisms between unital
C∗-algebras.

Assume that A is a unital C∗-algebra with norm || · ||A with unit e and
B is a unital C∗-algebra with norm ∥ · ∥B . Let U(A) be the set of all unitary
elements in A.
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Theorem 5.2. Let h : A → B be an odd bijective mapping satisfying h( 2
s

rs uy) =

h( 2
s

rs u)h(y) for all u ∈ U(A), all y ∈ A, and s = 0, 1, 2, . . . , for which there
exists a function ϕ : An → [0,∞) such that

(5.5)
∞∑
j=0

(r
2

)j
ϕ

((
2

r

)j

x1, . . . ,

(
2

r

)j

xn

)
< ∞,

∥ Dµh(x1, . . . , xn) ∥B≤ ϕ(x1, . . . , xn),

(5.6)

∥∥∥∥h(2s

rs
u∗
)
− h

(
2s

rs
u

)∗∥∥∥∥
B

≤ ϕ

((
2

r

)s

u, . . . ,

(
2

r

)s

u

)
for all µ ∈ S1 := {λ ∈ C | |λ| = 1}, all u ∈ U(A), s = 0, 1, 2, . . . , and all

x1, . . . , xn ∈ A. Assume that lims→∞
rs

2sh(
2s

rs e) is invertible. Then the odd
bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Consider C∗-algebra A and B as left Banach modules over the unital C∗-
algebra C. By Theorem 5.1, there exists a unique generalized C-linear mapping
H : A → B such that

∥ h(x)−H(x) ∥B≤
1

4 n−2C 2
n−1

ϕ̃(x, x, 0, . . . , 0)

for all x ∈ A, where the generalized additive mapping H : A → B is given by

H(x) = lim
s→∞

rs

2s
h

(
2s

rs
x

)
for all x ∈ A. By equations (5.5) and (5.6), we have

H(u∗) = lim
s→∞

rs

2s
h

(
2s

rs
u∗
)

= lim
s→∞

rs

2s
h

(
2s

rs
u

)∗

=

(
lim
s→∞

rs

2s
h

(
2s

rs
u

))∗

= H(u)∗

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combi-
nation of unitary elements (see [9], Theorem 4.1.7), i.e.,

x =

m∑
j=1

λjuj ,

where λi ∈ C, uj ∈ U(A) ,

H(x∗) = H
( m∑

j=1

λju
∗
j

)
=

m∑
j=1

λjH(uj)
∗ =

( m∑
j=1

λjH(uj)
)∗

= H
( m∑

j=1

λjuj

)∗
= H(x)∗ for every x ∈ A.
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Since h( 2
s

rs uy) = h( 2
s

rs u)h(y) for all u ∈ U(A), all y ∈ A, and s = 0, 1, 2, . . . ,
we have

H(uy) = lim
s→∞

rs

2s
h

(
2s

rs
uy

)
= lim

s→∞

rs

2s
h

(
2s

rs
u

)
h(y) = H(u)h(y)

for all u ∈ U(A), all y ∈ A. By the additive property of H and above equation,

2s

rs
H(uy) = H

(
2s

rs
uy

)
= H

(
u

(
2s

rs
y

))
= H(u)h

(
2s

rs
y

)
for all u ∈ U(A), all y ∈ A. Hence we may have that

H(uy) =
rs

2s
H(u)h

(
2s

rs
y

)
= H(u)

rs

2s
h

(
2s

rs
y

)
for all u ∈ U(A), all y ∈ A. Now, by taking s → ∞,

(5.7) H(uy) = H(u)H(y)

for all u ∈ U(A), all y ∈ A. Since H is C-linear and each x ∈ A is a finite linear
combination of unitary elements, i.e.,

x =
m∑
j=1

λjuj ,

where λi ∈ C, uj ∈ U(A), the equation (5.7) implies that

H(xy) = H
( m∑

j=1

λjujy
)
=

m∑
j=1

λjH(ujy) =
m∑
j=1

λjH(uj)H(y)

= H
( m∑

j=1

λjuj

)
H(y) = H(x)H(y)

for all x, y ∈ A. Also, we have H(e)H(y) = H(ey) = H(e)h(y) for all y ∈ A.

By the assumption that lims→∞
rs

2sh(
2s

rs e) = H(e) is invertible,

H(y) = h(y)

for all y ∈ A. Thus the odd bijective mapping h : A → B is a C∗-algebra
isomorphism. □

Corollary 5.3. Let h : A → B be an odd bijective mapping satisfying h( 2
s

rs uy)=

h( 2
s

rs u)h(y) for all u ∈ U(A), all y ∈ A, and s = 0, 1, 2, . . . , for which there
exists a function ϕ : An → [0,∞) such that

(5.8)
∞∑
j=0

(r
2

)j
ϕ

((
2

r

)j

x1, . . . ,

(
2

r

)j

xn

)
< ∞,

∥ Dµh(x1, . . . , xn) ∥B≤ ϕ(x1, . . . , xn),
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(5.9)

∥∥∥∥h(2s

rs
u∗
)
− h

(
2s

rs
u

)∗∥∥∥∥
B

≤ ϕ

((
2

r

)j

u, . . . ,

(
2

r

)j

u

)
for all µ = 1, i, all u ∈ U(A), s = 0, 1, 2, . . . , and all x1, . . . , xn ∈ A. Assume

that lims→∞
rs

2sh(
2s

rs e) is invertible. If h(tx) is continuous in R for each fixed
x ∈ A, then the odd bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Let µ = 1 in the equation (5.9). By Theorem 5.1, there exists a unique
generalized C-linear mapping H : A → B satisfying the equation (5.3). By
the same reasoning as in the proof of [11], the generalized additive mapping
H : A → B is R-linear. Now, let µ = i in the equation (5.9). Similar to the
proof of Theorem 5.1, we have

H(ix) = lim
s→∞

rs

2s
h

(
2s

rs
ix

)
= lim

s→∞

rsi

2s
h

(
2s

rs
x

)
= iH(x)

for all x ∈ A. For each element λ ∈ C, λ = s+ it, where s, t ∈ R. Hence

H(λx) = H(sx+ itx) = (s+ it)H(x) = λH(x)

for all λ ∈ C, and all x ∈ A. Thus

H(ζx+ ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the generalized additive mapping
H : A → B is C-linear. The remains of the proof is similar to the proof of
Theorem 5.2. □
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