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ON STABILITY PROBLEMS WITH SHADOWING
PROPERTY AND ITS APPLICATION

HAHBNG-YUN CHU, GILJUN HAN, AND DONG SEUNG KANG

ABSTRACT. Let m > 2 be an even integer. We investigate that if an odd
mapping f : X — Y satisfies the following equation

2n2Coyrf (D 2|+ > rf (Z(—nl“)
=" ir€{0,1} i=1 T

Yh=1i=%
n
=2n-2C02_4 > f@a),
i=1

then f: X — Y is additive, where r € R. We also prove the stability in
normed group by using shadowing property and the Hyers-Ulam stability
of the functional equation in Banach spaces and in Banach modules over
unital C'*-algebras. As an application, we show that every almost linear
bijection h : A — B of unital C*-algebras A and B is a C*-algebra
isomorphism when h(f—::uy) = h( 22

“su)h(y) for all unitaries u € A, all
y€ A and s =0,1,2,....

1. Introduction

In 1940, the problem of stability of functional equations was originated by
Ulam [15] as follows: Under what condition does there exist an additive map-
ping near an approximately additive mapping?

The first partial solution to Ulam’s question was provided by D. H. Hyers [7].
Let X and Y be Banach spaces with norms || - ||x and || - ||y, respectively.
Hyers showed that if a function f: X — Y satisfies the following inequality

[ f(@+y) = flx) = fy) ly<e
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for all € > 0 and for all z,y € X, then the limit

a(z) = lim 27" f(2"x)

n—oo

exists for each x € X and a : X — Y is the unique additive function such that

| f(z) —a(z) [[y< e

for any x € X. Moreover, if f(tz) is continuous in ¢ for each fixed « € X, then
a is linear.

Hyers’ theorem was generalized in various directions. In particular, thirty
seven years after Hyers’ Theorem, Th. M. Rassias provided a generalization of
Hyers’ result by allowing for the first time in the subject of functional equations
and inequalities the Cauchy difference to be unbounded; see [11]. Gavruta [6]
provided a generalization of the Theorem of Th. M. Rassias.

Several functional equations have been investigated in [3], [4], [5]. Recently,
Bae and Park investigated that the generalized Hyers-Ulam-Rassias stability in
Banach modules over a C*-algebra and unitary Banach algebra; see [1]. In [2],
Baak et al. introduced generalized additive functional equation and studied the
stability in Banach modules and isomorphisms between C*-algebras. Recently,
Lee, Koh and Ku [10] investigated the stability via shadowing property with a
quadratic functional equation.

Let n be an even integer, and r € R. In this paper, we investigate that a
mapping f : X — Y satisfies the following equation

2p29Cn qrf Zi—] + Z rf <Z(1)’Lk?)
Jj=1 z‘ﬁe{q,1} i=1

p—r
k=1"'k=732

=2p202, Z flax;).
i=1

First of all, we show that if above mapping f is odd, then it is additive.
Next, we prove the stability in normed group by using shadowing property.
By using the some results as in [2], we study the Hyers-Ulam stability of the
functional equation in Banach spaces and also in Banach modules over a unital
C*-algebras. Also, its application, we show that every almost linear bijection
h: A — B of unital C*-algebras A and B is a C*-algebra isomorphism when
h(f—uy) = h(%u)h(y) for all unitaries u € A, ally € A, and s =0,1,2,....
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2. Generalized additive mapping in several variables

Lemma 2.1. Let n > 2 be an even integer number, and let X,Y be vector
spaces. A given odd mapping f: X — Y defined by

Jj=1 ir€{0,1} i=1
(21) k=1 ik=%

= 277‘720%71 Zf(xl)a

=1

is additive, for all x1,...,x, € X.

Proof. Since f is odd, we have f(0) = 0.
Now, by letting 1 =z, o =y, and z3 = --- = x,, = 0, we get

2p—2Cz_arf (:c—:y) +n—2 Curf (m;i—y) +n—2 Cg1rf<_x+y)

r
+n2Cz _arf (x — y) tn—2Cz_orf <_x - y>
r T
= 2,50 (@) + F)

for all z,y € X. Since f is odd and n_gC%_g =p_9 CL;, we have

r+y

20-2Cyoarf (T5) = 2,00y (1(0) + )

for all z,y € X. Then we get
T+
ot () = 1@+ )

for all z,y € X. Hence we have rf(%) = f(x), when y = 0. Thus f(z +y) =
rf(Z2) = f(z) + f(y), that is, f is additive. O

r

3. Stability using shadowing property

In this section, we will investigate the stability of the given functional equa-
tion based on the ideas from dynamical systems. Before we proceed, we would
like to introduce some basic definitions concerning shadowing and key concepts
to establish the stability; see [14].

Let us fix some notations which will be used throughout this section. First
of all, we will fix » = 1, that is, we will investigate the generalized mappings
of 1-type. Also, we denote N the set of all nonnegative integers, X a complete
normed space and B(x, s) the closed ball centered at x with radius s and let
¢ : X — X be given.
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Definition 3.1. Let 6 > 0. We say that a sequence (xy)ren is a d-pseudoorbit
(for ¢) if

d(xgy1,9(xg)) <6 for k€ N.
A 0-pseudoorbit is called an orbit.

Definition 3.2. Let s, R > 0 be given. We say that ¢ : X — X is locally
(s, R)-invertible at 2o € X if

Yy € B(¢(xo), R), Iz € B(xg,s): o(x)=y.

If ¢ is locally (s, R)-invertible at each = € X, then we say that ¢ is locally
(s, R)-invertible.

For a locally (s, R)-invertible function ¢, we define a function

1 B(¢(x0), R) — B(xo,5)

zo
in such a way that ¢ 01 (y) denote the unique = from the above definition which
satisfies ¢(x) = y. Moreover, we put

lipR¢_1 = stg( 1ip(<;5;01),
xo

where lip(¢;,') is the lipschitz constant of ¢ !.

Theorem 3.3 ([13]). Let ! € (0,1),R € (0,00) be fizred and let ¢ : X — X
be locally (IR, R)-invertible. We assume additionally that lipgp(¢p~t) < I. Let
§ < (1—=1)R and let (zx)ren be an arbitrary 0-pseudoorbit. Then there exists
a unique y € X such that

d(zy, 6" (y)) <IR  for k€ N.

Moreover,
d(zy, " (y)) < —
1-1
Let (X,*) be a semigroup. We denote kz to be x x---xx, where z € X
—

k
and k € N. Then the mapping || - || : X — R is called a (semigroup) norm if it

satisfies the following properties:
(1) for all x € X, ||z]| > 0.
(2) for all x € X,k € N, ||kz|| = k||=]|.
(3) for all z,y € X, ||z|| + |ly|| > ||z * y|| and also the equality holds when
x =y, where * is the binary operation on X.

for k e N.

Note (X, #,]||-]|) is called a normed group if X is a group with an identity
e, and it additionally satisfies that [|z|| = 0 if and only if x = e.

We say that (X, x,||-]||) is a normed (semi)group if X is a (semi)group with
anorm ||-||. Now, given an Abelian group X and n € Z, we define the mapping
[nx]: X — X by the formula

[nx](z) :=nz forxz e X.
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Also, we are going to need the following result. In recent years, Lee et al.
showed the next lemma by using Theorem 3.3.
Lemma 3.4 ([10]). Let l € (0,1),R € (0,00),8 € (0,(1 —)R),e > 0,m €
N,n € Z. Let G be a commutative semigroup, X a complete Abelian metric
group. We assume that the mapping [nx]| is locally (IR, R)-invertible and that
lipp([nx]™1) <. Let f : G — X satisfy the following two inequalities

N
H ;aif(bilxl + o+ bixn) ‘

|f(mz) —nf(x)|]] < 0 forzed,

where all a; are endomorphisms in X and b;; are endomorphisms in G. We
assume additionally that there exists K € {1,..., N} such that

IN

e forxy,...,z, €G,

K N
6
3.1 lip(a;)d < (1 — )R, &+ lip(a;)—— < IR.
B1) D lpe) <O-DR s+ 3 ey

Then there exists a unique function F : G — X such that
F(mz) =nF(z) forzeg,
and

|| f(x) — F(z)|| < % forxz € G.

Moreover, F satisfies
N
ZaiF(bilxl +-+ b, x,)=0 foraz,...,z, €G.
i=1

Now, we are ready to prove our functional equations as follows:

Df(z1,.. . 2n) = 2n202_1f ij

Jj=1

(3.2) + Y f(Z(—nikmk)

i, €{0,1} k=1
Xho1 =%

—2,2C24 Z f(zi)
i=1
for all z1,...,z, € G.

Theorem 3.5. Let R > 0, let n > 3 be an even integer, G a commutative
semigroup, and let X be a complete normed Abelian group. Suppose that [nx]

is locally (£, R)-invertible and lipp(nx]™') < 1. Let e < 42((751;3)]% and let
f: G — X be a function such that

(3-3) IDf(z1,. . mn)l[ < e
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forallxy,...,x,,x € G. Then there exists a unique function F : G — X such
that

F(nx) = nF(x),

DF(I’l,...,JZn) = O,

1F(@) — f@)l < 2

i €
(n—2)p—2Cz_4

forallxzy,...,x,,z €Q.

Proof. By letting ©1 = --- = x,, = 0 in the equation (3.3), we have

that is, ||f(0)]] < ﬁ Now, by putting z, = x(k = 1,...,n) in (3.3),

n
2

n—2
2

the inequality ||f(0)]| < (71722% implies
WCy

n
-2

12n-2C3 -1 f(n2) = 2nn—2Cy 1 f(2)]| < ——e,

that is, we have ||f(nx) — nf(z)|] < sy, oa ¢ for all z € G. To apply
Lemma 3.4 for the function f, we may let ’

1 n

l=-,0= K=, Cn,
4’ 2(n — 2)n_20%_1 & 2
alz...:aK:id)“

K41 =+ = af+n = —2,-2C2 1idx,

an =2,2C2_;idx, where N = K +n+ 1.

Then we have
n
€
2(71 - 2)n_20%_1
< n 3(n—2)
T 2(n—2)p—2Cz_1 4n(5n —4)

6:

R

SZRz(l—l)R,

K
n
lin(a:)s = K -
; lp(al)5 2(n _ 2)’”720%715
2(n—1) 3
= n(n—4) ZR

IN

3
R=1(1-
4R (1-1)R,



STABILITY PROBLEMS 679

and

N
. 1o 1 n(n+1)
lip(a;) —— =+ = - =)
5+i:;_1 1p(al)1il 5—|—3 — €
n®>+4n—6

~ 4n(5n —4) R

IN

1

-R=IR.

4

Hence all conditions of Lemma 3.4 are satisfied, and thus we conclude that
there exists a unique function F': G — X such that

(3.4) F(nz) =nF(x),

DF(z,...,z,)=0

and also we have

) n
— < = f 1 .
1f(z) = F(z)|] < 1-1 6(n*2)n_20g_1€ orall z1,...,z,,z €G

Theorem 3.6. Let R > 0, let n > 3 be an even integer, G a commutalive semi-
group, X a complete normed Abelian group, and let f : G — X be a function.
Suppose that [(,—1Cn)x] is locally (H%,R)—mvertible, [(A(n— 2),Cn)x] is
2
locally (%,R}—mvertible, and [(2,—2Cz _1)x] is locally (W,R)—
invertible. Then f satisfies the following equation
(3.5) Df(x1,...,2,) =0
forall x1,...,x, € G if and only if f is a Cauchy additive odd function.
Proof. We are going to prove that f as in the equation (3.5) is a Cauchy additive
mapping. By letting 2 = 0(k =1,...,n) in the equation (3.5), we have
n—2
"2 0sr0) =0,

By the uniqueness of the local division by 252 nCz, we get f(0) = 0.
Also, setting 1 = z,2p, = 0(k = 2,...,n) and by the uniqueness of the
local division by ,,—1C=, the equation f(0) = 0 implies that
25202 1f(x) +n-1C2 f(x) +1n-1Cn_1f(—2) =2, 202, f(x),
that is, we have — f(z) = f(—x) for all x € G.

Now, by letting x1 =z, zo =y, and z3 = --- = x,, = 0, we get
2,2Cn 1 f(x+y) +tn2Cnf(x+y) +n2Cn_1f(—z+y)
+n—20%—1f(x —Y) +n-2 O%—Zf(_x - )

= 2,20 (@) + S)
for all z,y € X.
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By the uniqueness of the local division by 2,,_2Cz_; and odd property, we
have

flz+y)=fx)+ fly)

for all z,y € G, that is, f is a Cauchy additive mapping, as desired. Conversely,
suppose that f is a Cauchy additive odd function. Then

22021 f Zﬂﬁj + Z f(Z(_l)ikxz)
=1

ire{0,1} i=1
2h—1ik=%

3

2,-2C2_1f zj | +0
j:

= 2,202 1 (f(z1) + -+ f(zn))

= 2,9C3 1> f(z)
i=1
for all 1,...,2, € G. Thus f satisfies the equation (3.5). ([

The direct application of Theorems 3.5 and 3.6 yields the following corollary.

Corollary 3.7. Let R > 0, let n > 3 be an even integer, G an Abelian group,
and X a complete normed Abelian group. Let ¢ < %R be arbitrary
and f : G — X a function satisfying the equation (3.3). Suppose that [nx]
is locally (£, R)-invertible with lipp([nx]™') < 1, and [(n-1C=)x] is locally
(ﬁ,R)—mvertible, [(5(n — 2)nCx)x] is locally (%,R)—mvertible,

and [(2,—2Cz _1)x] is locally (ﬁ,]{)—mvertible. Then there exists a
2

Cauchy additive odd function F : G — X such that

n
(n—2)p—2Cn_

1E(z) = f@)ll < 5

for all x € G.

4. On Hyers-Ulam-Rassias stabilities

From now on, let X be a normed vector space with norm || - [[x and Y be
a Banach space with norm || - ||y . Let n > 2 be even.
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For the given mapping f : X — Y, we define

n

.
Df(xl,...,xn) = Qn,QC%,le ij
=1 "
n . T
m Cox (e
ir€{0,1} k=1
k=1k=3%

2,905 1Y f(xi)
i=1

for all z1,...,x, € X.

Theorem 4.1. Let n > 2 be even and let f : X — Y be an odd mapping for
which there exists a function ¢ : X™ — [0,00) such that

(4.2) St xn) = i (g)j & ((i)]xl - (i)]az> < 0,

=0

(4.3) I Df(x1,...;20) [y < d(x1,. .. 20)

forallxy,...,x, € X. Then there exists a unique generalized additive mapping

L: X —Y such that

1 ~

(4.4) [ f(z) = L(z) [y < TmsCyy ¢(z,2,0,...,0)

forall x € X.

Proof. By letting 1 =z =z and z; =0(j = 3,...,n) in (4.3), since f is an
odd mapping, we have

for all z € X. Then we obtain that
r 2

4. ——f( -

as) |- (%)

for all x € X.
From the equation (4.5), we have

G (3)) -0 ()|
< ()5 e ((3) 2 () won)

S¢($,$,O,...,O)
Y

2
2p—2Cn_arf (TJU) —4,2Cn 1 f(2)

1

< — 0,...,0
v — 4.n_2 C%_ld)(x?x’ ) ) )
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for all x € X and all positive integer d. Hence we get
\$ 2\° @ 2\ ¢
(3) f(<> f”) -(3) f(() ”C)H
Y
d-1 ; j j
1 1 r\J 2 2
< S — - - - 0,...,0
4 - 2Cn 2(2) ¢<<r> x’(r) AR )

j=s

for all x € X and all positive integers s and d with s < d. Hence we may
conclude that the sequence {(4)*f((2)*z)} is a Cauchy sequence. Hence the
sequence converges in Y for all x € X. Thus we may define a mapping L : X —

Y via .
=1 () 1 ()

for all z € X. Since f is odd, so is L. Then by the definition of DL(x1,..
and (4.3),

> Tn)

| DL, w) < Jim (5 0(C) o, () =0

for all z1,...,2, € X. That is, DL(z1,...,2,) = 0. By Lemma 2.1, the map-
ping L : X — Y is a generalized additive mapping of r-type. Also, letting
s = 0 and passing the limit d — oo in (4.6), we get the equation (4.4).

Now, let L' : X — Y be another generalized additive mapping of r-type
satisfying (4.4). Then we have

wo-sion - () 1)),
() AC) () ()
=;@;<g>%((i>% (7) woreon) o

for all z € X as s — oco. Thus we may conclude that such a generalized additive
mapping L is unique. O

i

)

Theorem 4.2. Let n > 2 be even and let f : X — Y be an odd mapping for
which there exists a function ¢ : X™ — [0,00) such that

@D Fene ) = i CY o () mnn () ) <

(4.8) | Df(z1,...,z0) Iy < d(21,...,20)



STABILITY PROBLEMS 683

forallxy,...,x, € X. Then there exists a unique generalized additive mapping
L:X —Y such that
1 ~
(4.9) | f(z) — L(z) |y < ————— ¢(z,2,0,...,0)
4 n—2C%—1
forall x € X.

Proof. Replacing z by $x in the equation (4.5), we have
2, /r 1 2, /r r

~Zr (s - = 7,7,07...,0).
Hf(x) rf(Qx) v 4”_20%_”“5(29” 2"

The remains follow from the proof of Theorem 4.1. O

5. Isomorphisms between unital C*-algebras

In this section, we are going to investigate C*-algebra isomorphisms between
a unital C*-algebra. Hence, first of all, we will prove that the Hyers-Ulam
stability of the given functional equation below in a Banach module over a
unital C*-algebra.

Assume that A is a unital C*-algebra with norm | - | and unital group U(A),
and that X and Y are left Banach modules over a unital C*-algebra A with
norms || - ||x and || - ||y, respectively.

Given a mapping f: X — Y, we set

n

Dy f(x1,...,2p) := 2n2Cn 1 f Z %
j=1
n
LD DI (Z<—l>"’“ﬁ”)
ir€{0,1} k=1

Dk—1 k=%
n
—2,202, Z u f(x;)
i=1

for all u € U(A) and all zq,...,z, € X.

Theorem 5.1. Let f : X — Y be an odd mapping for which there exists a
function ¢ : X™ — [0,00) such that

(5.1) H(1,. .. Tn) == i (g)j & ((3)]901 . (i)]xn> < 0,

7=0
(5.2) | Duf (@i, wn) Iy < Olan, ... 20)
forallu € U(A) and all 21, ...,x, € X. Then there exists a unique generalized
A-linear mapping L : X =Y such that
1 ~
(5.3) | f(z) = Lz) [y < 7——F=— ¢(z,2,0,...,0)

T4 2C2y
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forall x € X.

Proof. Let u =1 € U(A). By Theorem 4.1, we know that there exists a unique
generalized additive mapping satisfying the equation (5.3) defined by

. TS 23
L(z) := 611)120 ﬁf (Tsx)
for all z € X. Also, L(z) is odd.
Now, by assumption for each u € U(A), we get

25

Duf (Sx,()’ e ,0)
T

0

. 7,,8 25
< lim 2—3(1) (Tsx,O,...,O) =

S
|DuL(z,0,...,0)|ly = lim —

s—o00 29

Y

for all x € X. Also, we have

2020y 17L (22) 01 Oy arL (= 2) 401 CyrL (22)
r r r

= 2,9Cn _qul(x)
for all w € U(A) and all z € X. Since n—1Cn_1 =51 Cz, and L is odd and
additive function, we have
(5.4) rL (%m) = ulL(x)
for all u € U(A) and all z € X.
Now, let a € A and M an integer greater than 4|a|. Then
|i| < 1 <1-— g — 1
M' "4 33
By [8], there exist three elements uy, ug, uz € U(A) such that ?ﬁ = u; +us +us.
So by the equation (5.4), we have

L(ax) = %L (3im> = %(L(ulx + L(ugz) + L(usx))

3 M 3
M M _a
= g(ul +ug +us)L(z) = 3 3ML(95) = alL(z)

for all a € A and all z € X. Hence
L(az + by) = L(ax) + L(by) = aL(x) + bL(y)

for all a,b € A and all z,y € X. Thus the unique generalized additive mapping
L : X — Yis an A-linear mapping. |

Now we are ready to prove the C*-algebra isomorphisms between unital
C*-algebras.

Assume that A is a unital C*-algebra with norm || - ||4 with unit e and
B is a unital C*-algebra with norm || - ||g. Let U(A) be the set of all unitary
elements in A.
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Theorem 5.2. Let h : A — B be an odd bijective mapping satisfying h(f—zuy) =
h(%u)h(y) for allu € U(A), ally € A, and s = 0,1,2,..., for which there
exists a function ¢ : A™ — [0,00) such that

(5.5) g}(;)j(b((i)]ml(i)an) < 0,

| Duh(ze, ... x0) ||BS ¢(x1, ... 20),

28 25 \* 2\° 2\°
o () ()] o))

rs rs B r r
for all p € ST := {x € C||A| = 1}, all u € U(A), s = 0,1,2,..., and all
T1,...,T, € A. Assume that limg_, oo ;—éh(z—e) is invertible. Then the odd

bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Consider C*-algebra A and B as left Banach modules over the unital C*-
algebra C. By Theorem 5.1, there exists a unique generalized C-linear mapping
H : A — B such that

1 ~
— < —
| h(z) — H(z) || p< 1,202, ¢(z,,0,...,0)

for all x € A, where the generalized additive mapping H : A — B is given by

. ) s 95 Db 7 98 *
H(u?) = lim oh (“ ) = Jim 55k (“>

A (2) -

for all uw € U(A). Since H is C-linear and each z € A is a finite linear combi-
nation of unitary elements (see [9], Theorem 4.1.7), i.e.,

I
{\
i5
8|3
>

m

Tr = ZA]"UJJ',

Jj=1

where \; € C,u; € U(A4),

H(z") = H(iyj“}k‘) = iin(uj)* = (i)\jH(uy’))*

=1 j=1 j=1

= H(i )\juj>* = H(z)* for every x € A.
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Since h(z—zuy) = h(z—su)h(y) forallu e U(A), ally € A, and s =0,1,2,...,
we have

() = Jim (S ) = im Zon (%) ) =m0

s—o0 28 s—o0 28

for all u € U(A), all y € A. By the additive property of H and above equation,

for all u € U(A), all y € A. Hence we may have that

() = 5 ton (2) = e o (%)
for all u € U(A), all y € A. Now, by taking s — oo,
(5.7) H{(uy) = H(u)H(y)

for all u € U(A), all y € A. Since H is C-linear and each x € A is a finite linear
combination of unitary elements, i.e.,

xr = Z )\ju]',
j=1
where \; € C,u; € U(A), the equation (5.7) implies that

H(xy) = H(Z)\jujy) = Z)\jH(ujy) = ZAJH(u])H(y)

H( i Ajuj)H(y) = H(z)H(y)

for all x,y € A. Also, we have H(e)H(y) = H(ey) = H(e)h(y) for all y € A.
By the assumption that limg_, ;—Sh(f—e) = H (e) is invertible,

H(y) = h(y)
for all y € A. Thus the odd bijective mapping h : A — B is a C*-algebra
isomorphism. ([l

Corollary 5.3. Leth : A — B be an odd bijective mapping satisfying h(f—uy) =
h(f—su)h(y) for allu € U(A), ally € A, and s = 0,1,2,..., for which there
exists a function ¢ : A™ — [0,00) such that

(5.8) i(;)]qS((i)Jxl (i)]xn> < 0,

H D#h(xh'"’xn) ||B§ ¢(I1,...,$n),
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59 r(Ze)-n(Z)] <o (2) v (2)

for all = 1,4, all u € U(A), s=0,1,2,..., and all x1,...,z, € A. Assume
that limg_, e ;—h(f—se) is invertible. If h(tx) is continuous in R for each fized
x € A, then the odd bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Let u =1 in the equation (5.9). By Theorem 5.1, there exists a unique
generalized C-linear mapping H : A — B satisfying the equation (5.3). By
the same reasoning as in the proof of [11], the generalized additive mapping
H : A — B is R-linear. Now, let u = 7 in the equation (5.9). Similar to the
proof of Theorem 5.1, we have

S 28 S 25
H(iz) = lim “h (zx) = lim —h <:z:> =iH(x)
/’-S /}nS

s—o0 28
for all x € A. For each element A € C, A = s + it, where s,t € R. Hence
H(\x) = H(sx +itx) = (s + it)H(z) = AH(x)
for all A € C, and all z € A. Thus

H(Cx +ny) = CH(z) +nH(y)

for all {,n € C, and all z,y € A. Hence the generalized additive mapping
H : A — B is C-linear. The remains of the proof is similar to the proof of
Theorem 5.2. (]
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