Browse > Article
http://dx.doi.org/10.4134/BKMS.2011.48.4.673

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION  

Chu, Hahng-Yun (Department of Mathematics Chungnam National University)
Han, Gil-Jun (Department of Mathematics Education Dankook University)
Kang, Dong-Seung (Department of Mathematics Education Dankook University)
Publication Information
Bulletin of the Korean Mathematical Society / v.48, no.4, 2011 , pp. 673-688 More about this Journal
Abstract
Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....
Keywords
shadowing property; Hyers-Ulam-Rassias stability; additive mapping; $C^*$-algebra isomorphism;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, 1960.
2 G.-L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190.   DOI
3 G.-L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), no. 1, 127-133.   DOI   ScienceOn
4 P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.   DOI   ScienceOn
5 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI   ScienceOn
6 R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249-266.   DOI
7 R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I, Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
8 S.-H. Lee, H. Koh, and S.-H. Ku, Investigation of the stability via shadowing property, J. Inequal. Appl. 2009 (2009), Art. ID 156167, 12 pp.
9 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.   DOI   ScienceOn
10 F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
11 J. Tabor, Locally expanding mappings and hyperbolicity, Topol. Methods Nonlinear Anal. 30 (2007), no. 2, 335-343.
12 J. Tabor and J. Tabor, General stability of functional equations of linear type, J. Math. Anal. Appl. 328 (2007), no. 1, 192-200.   DOI   ScienceOn
13 J.-H. Bae and W.-G. Park, On the generalized Hyers-Ulam-Rassias stability in Banach modules over a $C^\ast$-algebra, J. Math. Anal. Appl. 294 (2004), no. 1, 196-205.   DOI   ScienceOn
14 C. Baak, D.-H. Boo, Th. M. Rassias, Generalized additive mapping in Banach modules and isomorphisms between $C^\ast$-algebras, J. Math. Anal. Appl. 314 (2006), no. 1, 150-161.   DOI   ScienceOn
15 H. Y. Chu and D. S. Kang, On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl. 325 (2007), no. 1, 595-607.   DOI   ScienceOn