• Title/Summary/Keyword: accretive operators

Search Result 35, Processing Time 0.022 seconds

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

  • Han, Song-Ho;Kim, Myeong-Hwan;Park, Jong An.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 1989
  • Recently many authors [2,3,5,6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory. On the other hand Kirk and Schonberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schonberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions. Their fundamental tool of proofs is based on a precise analysis of the orbit of resolvents of m-accretive operator at a specified point in its domain. In this paper we obtain a sufficient condition for m-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schonberg [10] and some results of Morales [12, 13] and Torrejon[15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schonberg [10].

  • PDF

NEW ITERATIVE PROCESS FOR THE EQUATION INVOLVING STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Zeng, Ling-Yan;Li, Jun;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.861-870
    • /
    • 2007
  • In this paper, under suitable conditions, we show that the new class of iterative process with errors introduced by Li et al converges strongly to the unique solution of the equation involving strongly accretive operators in real Banach spaces. Furthermore, we prove that it is equivalent to the classical Ishikawa iterative sequence with errors.

ALTERNATING RESOLVENT ALGORITHMS FOR FINDING A COMMON ZERO OF TWO ACCRETIVE OPERATORS IN BANACH SPACES

  • Kim, Jong Kyu;Truong, Minh Tuyen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1905-1926
    • /
    • 2017
  • In this paper we introduce a new iterative method by the combination of the prox-Tikhonov regularization and the alternating resolvents for finding a common zero of two accretive operators in Banach spaces. And we will give some applications and numerical examples. The results of this paper improve and extend the corresponding results announced by many others.

Ishikawa-Type And Mann-Type Iterative Processes With Errors For m-Accretive Operators

  • Park, Jong-Yeoul;Jeong, Jae-Ug
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.309-323
    • /
    • 2000
  • The purposes of this paper are to revise the definitions of Ishikawa and Mann type iterative processes with errors, to study the unique solution of the m-accretive operator equation x+Tx=f and the convergence problem of Ishikawa and Mann type iterative processes with errors for m-accretive mappings without the Lipschitz condition. The results presented in this paper improve, extend, and unify the corresponding results in [4, 7, 8, 12, 16] in more general setting.

  • PDF

ITERATIVE APPROXIMATION TO M-ACCRETIVE OPERATOR EQUATIONS IN BANACH SPACES

  • Park, Jong An;Park, Yang Seob
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.83-88
    • /
    • 1996
  • In 1994 Z.Liang constructed an iterative method for the solution of nonlinear equations involving m-accretive operators in uniformly smooth Banach spaces. In this paper we apply the slight variants of Liang's iterative methods and generalize the results of Z.Liang. Moreover our proof is more simple than Liang's proof.

  • PDF

ITERATIVE SOLUTION OF NONLINEAR EQUATIONS WITH STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.605-615
    • /
    • 2000
  • Let E be a real Banach space with property (U,${\lambda}$,m+1,m);${\lambda}{\ge}$0; m${\in}N$, and let C be a nonempty closed convex and bounded subset of E. Suppose T: $C{\leftrightarro}C$ is a strongly accretive map, It is proved that each of the two well known fixed point iteration methods( the Mann and Ishikawa iteration methods.), under suitable conditions , converges strongly to a solution of the equation Tx=f.

ITERATION PROCESSES WITH ERRORS FOR NONLINEAR EQUATIONS INVOLVING $\alpha$-STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.349-365
    • /
    • 2001
  • Let X be a real Banach space and $A:X{\rightarrow}2^X$ be an $\alpha$-strongly accretive operator. It is proved that if the duality mapping J of X satisfies Condition (I) with additional conditions, then the Ishikawa and Mann iteration processes with errors converge strongly to the unique solution of operator equation $z{\in}Ax$. In addition, the convergence of the Ishikawa and Mann iteration processes with errors for $\alpha$-strongly pseudo-contractive operators is given.

  • PDF

Strong Convergence Theorems for Common Points of a Finite Family of Accretive Operators

  • Jeong, Jae Ug;Kim, Soo Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.445-464
    • /
    • 2019
  • In this paper, we propose a new iterative algorithm generated by a finite family of accretive operators in a q-uniformly smooth Banach space. We prove the strong convergence of the proposed iterative algorithm. The results presented in this paper are interesting extensions and improvements of known results of Qin et al. [Fixed Point Theory Appl. 2014(2014): 166], Kim and Xu [Nonlinear Anal. 61(2005), 51-60] and Benavides et al. [Math. Nachr. 248(2003), 62-71].