Browse > Article
http://dx.doi.org/10.4134/JKMS.j160764

ALTERNATING RESOLVENT ALGORITHMS FOR FINDING A COMMON ZERO OF TWO ACCRETIVE OPERATORS IN BANACH SPACES  

Kim, Jong Kyu (Department of Mathematics Education Kyungnam University)
Truong, Minh Tuyen (Department of Mathematics and Informatics Thainguyen University)
Publication Information
Journal of the Korean Mathematical Society / v.54, no.6, 2017 , pp. 1905-1926 More about this Journal
Abstract
In this paper we introduce a new iterative method by the combination of the prox-Tikhonov regularization and the alternating resolvents for finding a common zero of two accretive operators in Banach spaces. And we will give some applications and numerical examples. The results of this paper improve and extend the corresponding results announced by many others.
Keywords
accretive operators; prox-Tikhonov method; alternating resolvent method; common zeros; operator equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009.
2 V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff, Leyden, 1976.
3 H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Anal. 60 (2005), no. 2, 283-301.   DOI
4 H. H. Bauschke, E. Matouskova and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715-738.   DOI
5 L. M. Bregman, The method of successive projection for finding a common point of convex sets, Sov. Math. Dokl. 6 (1965), 688-692.
6 I. Cioranescu, Geometry of Banach Spaces, "Duality Mappings and Nonlinear Problems", Kluwer Academic Publishers, Dordrecht, 1990.
7 K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
8 K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
9 G. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403-419.   DOI
10 A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc. 70 (1964), 709-710.   DOI
11 H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal. 57 (2004), no. 1, 35-61.   DOI
12 J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal. Appl. 64 (2006), no. 11, 2536-2552.   DOI
13 J. S. Jung, Iterative methods for pseudocontractive mappings in Banach spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 643602, 7 pages.
14 J. K. Kim and N. Buong, Convergence rates in regularization for a system of nonlinear ill-posed equations with m-accretive operators, J. Inequal. Appl. 2014 (2014), no. 440, 9 pages.
15 J. K. Kim and T. M. Tuyen, Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2011 (2011), no. 52, 10 pages.
16 N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optim. 37 (1996), no. 3, 239-252.   DOI
17 E. S. Levitin and B. T. Polyak, Constrained Minimization Method, USSR Comput. Math. Math. Phys. 6 (1966), 1-50.
18 B. Martinet, Regularisation d'inequations variationnelles par approximations successives, (French) Rev. Francaise Informat. Recherche Operationnalle 4 (1970), Ser. R-3, 154-158.
19 Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.   DOI
20 J. von Neumann, Functional Operators. II. The Geometry of Orthogonal Space, Annals of Mathematics Studies, no. 22. Princeton University Press, Princeton, N. J., 1950.
21 W. V. Petryshn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970), 282-291.   DOI
22 R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510.   DOI
23 R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.   DOI
24 R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877-898.   DOI
25 D. R. Sahu and J. C. Yao, The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces, J. Global Optim. 51 (2011), no. 4, 641-655.   DOI
26 Y. Song and C. Yang, A note on a paper: A regularization method for the proximal point algorithm, J. Global Optim. 43 (2009), no. 1, 171-174.   DOI
27 S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), no. 1, 27-41.   DOI
28 T. M. Tuyen, A regularization proximal point algorithm for zeros of accretive operators in Banach spaces, Afr. Diaspora J. Math. 13 (2012), no. 2, 62-73.
29 T. M. Tuyen, Strong convergence theorem for a common zero of maccretive mappings in Banach spaces by viscosity approximation methods, Nonl. Func. Anal. Appl. 17 (2012), no. 2, 187-197.
30 N. C. Wong, D. R. Sahu, and J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal. 69 (2008), no. 12, 4732-4753.   DOI
31 H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36 (2006), no. 1, 115-125.   DOI
32 H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643.   DOI