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ISHIKAWA-TYPE AND MANN-TYPE
ITERATIVE PROCESSES WITH ERRORS
FOR m-ACCRETIVE OPERATORS

JONG YEOUL PARK AND JAE UG JEONG

ABSTRACT. The purposes of this paper are to revise the definitions
of Ishikawa and Mann type iterative processes with errors, to study
the unique solution of the m-accretive operator equation x + Tz = f
and the convergence problem of Ishikawa and Mann type iterative
processes with errors for m-accretive mappings without the Lipschitz
condition. The results presented in this paper improve, extend, and
unify the corresponding results in [4, 7, 8, 12, 16] in more general
setting.

1. Introduction

Throughout this paper, we assume that E is a real Banach space, E*
is the dual space of E, and (-, ) denotes the pairing of £ and E*. The
mapping J : E — 2E” defined by

J(z)={f € B : (z,f) = |l=|* = | £II*}

is called the normalized duality mapping.
A mapping T with domain D(T') and range R(T) in E is called ac-
cretive [1] if the inequality

lz =yl < |lz—y+t(Tz—Ty)|

holds for each z,y € D(T') and for all t > 0. The operator T is said to
be m-accretive if T is accretive and (I + AT)(D(T)) = E for all A > 0,
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where [ is the identity operator on E. T is accretive if and only if for
any z,y € D(T), there is j € J(z — y) such that

A class of operators closely related to the class of accretive operators is
the class of dissipative operators. An operator T is dissipative if and only
if (—T) is accretive and T on F is called m-dissipative if (/—AT)(E) = E
for each A > 0. Browder ([2]) proved that if T is a locally Lipschitzian
dissipative operator on D(T') = E then T is m-dissipative.

Accretive operators were introduced independently in 1967 by Brow-
der ({1]) and Kato ([10]). An early fundamental result, due to Browder
([1]), in the theory of accretive operators states that the initial value

problem

du
E—FTu:O, u(0) = uo

is solvable if T is a locally Lipschitzian and accretive operator on E.
Utilizing the existence result, Browder ([1]) further proved that if T is
locally Lipschitzian and accretive with D(T") = E then T is m-accretive,
that is, (I + T)(FE) = E, so that for any given f € X, the equation z +
Tz = f has a solution. The result was generalized by Martin ([14]) to the
continuous accretive operators. Recently, Chidume ([4,5]) proved that
the Mann type iterative sequence converges strongly to a solution of the
equation x+Tx = f where T is a Lipschitz accretive operator defined on
the Hilbert space H or the space L,,. In [6], he generalized results in [4,5]
to uniformly smooth Banach space and continuous accretive operators.
Chidume and Osilike ([7]) extended the above results to the Ishikawa
type sequence where T is Lipschitz m-accretive and D(T') is a closed
subset of a real Banach space F which is both uniformly convex and g¢-
uniformly smooth. And Ding ([8]) and Zhu ([16]) showed that the Mann
and Ishikawa type iterative sequences with errors converge strongly to
the unique solution of the equation z + T2 = f.

The purposes of this paper are to revise the definitions of Ishikawa
and Mann type iterative processeswith errors and to study convergence
theorems of Ishikawa and Mann type iterative processes with errors for
approximating the unique solution of the equation z + Tx = f where
T : D(T) ¢ F — E is an m-accretive operator with closed domain
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D(T') which may not be Lipschitz and E is both uniformly convex and
uniformly smooth. We also prove convergence theorems of Ishikawa and
Mann type iterative processes with errors for approximating the unique
solution of the equation z — \T'z = f where T : D(T) C E — E is
an m-dissipative operator with closed domain D(T") which may not be
Lipschitz. The results presented in this paper improve, extend, and unify
the corresponding results in [4, 7, 8, 12, 16] in more general setting.

2. Preliminaries

Let E be a real Banach space with || - |. The modulus of smoothness
pe(-) of E is the function pg : [0,00) — [0, 00) defined by

1
pe(T) = 5sup{||x+y|| +Hac~y|| -2:z,y€F, “l‘” =1yl £ T}’T > 0,

and that F is said to be uniformly smooth if lim,_,g ﬂ’—g—) =0. Itis
well known that F is uniformly convex (smooth) if and only if E* is
uniformly smooth (convex).

We first recall the following iteration process due to Liu ([11]).

(I) The Ishikawa iteration process with errors is defined as follows:
For a nonempty subset D of a Banach space £ and a mapping T': D C
E — E, the sequence {z,} in D is defined by

z9 € D,
Tp41 = (1 - an)xn + anTyn + Up,
Yn = (1 - ﬂn)xn + ﬂnTmn + Uy, N2> 0,

where {u,} and {v,} are two summable sequences in E, i.e., > oo o [[un]|
< 00, 32 ollnll < oo, and {an}, {Bn} are two sequences in [0, 1]
satisfying certain restrictions.

Clearly, the sequence {x,} exists when D = E. Note that the Mann
([13]) and Ishikawa ([9]) iteration procedures are all special cases of the
Ishikawa iteration process with errors. Inspired by [8,11,12], we introduce
the following concept of the Ishikawa type iteration process with errors.
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(II) The Ishikawa-type iteration process with errors is defined as fol-
lows: For a nonempty subset D of a Banach space E and a mapping
T:D CFE — FE, the sequence {p,} in E is defined by

zg € D,
(2.1) Pn+1 = QnZn + BrnTQYn + Ynin,
Yn = GnTy + BnTmn + ;;’n'vna
Tpy1 = Qpn-i-la n > Oa
where the mapping @) : E — D is a retraction of E onto D. Hence {u,,}

and {v,} are two bounded sequences in E; {a,}, {Bn}, {7}, {Gn},
{Br}, and {4} are six sequences in [0, 1] satisfying the conditions

(2.2) On~+Bn+Yn=06n+PBn+m=1 forall n>0.

In particular, if 8, = %, = 0 for all n > 0, the sequence {prn} in E is
defined by
zp € D,
Prt+1 = 0nZpn + BrTQxrn + Ynln,
Tnt1 = QPrt1, 120,
which is called the Mann-type iteration process with errors.

The following four lemmas play a crucial role in the proofs of our main
results.

LEMMA 2.1 ([3]). Let E be a real Banach space. Then, for all z,y €

E,
lz +ylI* < lll|* + 2(y, 5 (2 +y))

for all j(z +y) € J(z +y), where J : E — 2E" is the normalized duality
mapping.

LEMMA 2.2 ([11]). Let an, bn, and ¢, be three nonnegative real
sequences satisfying

an+1 < (1 —tp)an +bn +cn, n>0,

with t, € [0,1], > 00 ytn = +00, by = O(ts), Sovepcn < +00. Then
lim, o @, = 0.
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LEMMA 2.3 ([16]). Let E be a real Banach space and T : D(T') C
E — E be an m-accretive operator. Then, for any given f € E, the
equation x + Tx = f has a unique solution in D(T).

LEMMA 2.4 ([15]). Let E be a real Banach space which is both
uniformly convex and uniformly smooth. Let T : D(T) C E — E
be m-accretive and let J. = (I + rT)~'. Then for each z € E, the
strong limit lim,_,o J-(x) exists. Denote the strong limit by Qx. Then
Q : E — cl(D(T)) is a nonexpansive retraction of E onto cI(D(T')) where
cl(D(T)) is the closure of D(T).

3. Main Results

THEOREM 3.1. Let E be a real Banach space which is both uniformly
convex and uniformly smooth. LetT : D(T) C E — E be an m-accretive
operator with a closed domain D(T). Define S : D(T) C E — E by
Sz = f — Tz, Yz € D(T), and suppose that the range of S is bounded.
For arbitrary o € D(T), the iteration sequence {p,} with errors is
defined by '

(3'1) Prntl = OnZrn + BnSQYn + Ynln,
(32) Yn = OnTy + ﬁnsmn + ﬁnvn,
(3.3) Tp+1 = QPnt1, n 20,
satisfying

(i) im 6, =0 and Zﬂn = +00;

n—00 par
(i) lim B, = 0;
n—o0

o0
(iii) Ji_)rx;o’)/n =0 and Z%'yn < +00,

where o, + fBn + Yn = i + B + A = 1(n > 0), {u,}, and {v,} are two
bounded subsets of E. Then for any xo € D(T), the iteration sequence

{pn} in E converges strongly to the unique solution z* € D(T) of the
equationz + Tz = f.
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PRrROOF. The existence and uniqueness of the solution z* to the equa-
tion z + T'z = f follow from the m-accretiveness of T' and Lemma. 2.3.
By the definition of S, we observe that Sz* = z*. Moreover, for each
z,y € D(T),

(3.4) (Sz — Sy, J(z —y)) < 0.

For any zo € D(T), we first compute yo = &ozo + B0Szo +4ovp in E and
then compute p; = apzo + BoSQyo + Youo in E. We can now compute
3] in D(T) by T = Qp]_. With I we compute Y1 = dlxl +,3151L'1 +"3’1’l)1
in E. Then p; = onz1 +51SQy1 +v1u1 € F and also z3 = Qps € D(T).
Continuing this process we generate the sequence {p,} and {z,}. Now
set

d= max{ sup ||un, —*||, sup|lvn —z*|,
n>0 n>0
(35) sup. 52— 7], o~ }.
zeD(T)

By (3.1), (3.3), (3.5), and the fact Q is a nonexpansive retraction of E
onto D(T'), we have

lz1 —=*|| = |Qp1 — Qz~||
< llpr — ||
< aollzo — "|| + BollSQuo — =*|| + Yolluo — 7|
<d.

For any n > 0, using induction, we obtain
(3.6) lzn —2z*|| <d, n>0.
Moreover, by using (2.2), (3.1), (3.2), (3.5), (3.6), we have that

lyn —2*|| < d,

(3.7 I — 27 <d, >0,
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By using (3.4) and (3.5), we have

(SQYn — 2™, J(zy, — x¥))
= (SQyn — 52", J(Qyn — z*))

—(SQyn — 2", J(Qyn — z7) = J(zn — "))
< (SQyn — 2, J(Qun — 2%) — J(z0 — 27))|
<15Qyn — |1 J(Qyn — 27) — J(zn — z7)||
< dlJ(Qyn — %) — J(zn — 7).

(3.8)

It then follows from (3.1), (3.5), (3.7), (3.8), and Lemma 2.1 that

lPn+1 — 37*”2

< Az — 2*|® + 28,(SQyn — &*, J (Pnt1 — 7))
+ 27 (tn — 2*, I (Pnt1 — T7))

= b ||z — 2*)1 + 26, {(SQun — =", J (zn — T*))
+(SQyn — &*, J(pry1 — &) — J(2n — z*))}
+ 295 (un — 2%, I (Pry1 — 7))

< (1= Ba)?l|zn — ¥ + 26.{d[| T (Qun — 2*) — J(z — z¥)]|
+{(SQyn — =%, J(Pny1 — 2¥) — J(zr — z7)) }
+ 27nllun — 2*||lprt1 — 7|

< (1= Bo)llzn — 2*|I? + 28, {d|J (Qun — z*) — J(zn — z*)|
+(SQyn — =%, J(Pry1 — 27) — J(zr — z%))}
+ 2y,d2,

(3.9)

and from (3.3), and the fact that @ is a nonexpansive retraction of £
onto D(T), we have

(3.10) lzn — 2™ = |Qpn — Qz"|| < [|pn — 27|
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Hence, by (3.9) and (3.10), we have
Ipnt1 — 2" 1% < (1= Ba)llpn — ¥
+ 26, {d||J(Qyn — %) — J(zn — z*)||
(3.11) +(SQuyn — &5, J(Pnt1 — &%) — J(zn — 7))}
+ 2'ynd2
= (1—-Bn)llpn — w*Hz + by + Cn,
where
bn = 2ﬂn{dHJ(Qyn —z¥) - J(@n — z*)||
+(SQyn — 2", J(Pn+1 — z*) — J(zn — "))},
Cn = 2Ynd?.
First, we prove that
1J(Qyn —2*) — J(zn —27)| = 0 as n— oo,
(SQun — z*, J(Prt1 — %) — J(xn —2%)) = 0 as n— oo

In fact, by (3.1), (3.2), (3.5), (3.6), the assumptions (ii) and (iii), we
have

1(Qyn — 2*) — (zn — =)
= ||Qyn — Qx|
< 1yn — 2all
< BllSzn — Tnll +Anllvn — 2al
< Bu(fiSzrn — z*|| + ll2* — zall) + An(llvn — 2|l + [l¥ — Znl])

< 2d(Br + An)
— 0 as n— oo,

l(Prt1 —2%) — (zn — %)l
= [|[Pnt1 — Zn|
= |8 (SQyn — zn) + Y (Un — 2n)||
< Bu(ISQyn — *|| + llz* = znll) + M (llun — "I + [|2" — 24l)
= 2d(Bn + n)
—0 as n — o0.
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Since {Qyn — *, n — *, ppy1 — 2*} and {SQy, — z*} are bounded sets
and F is uniformly smooth so that J is uniformly continuous on any
bounded subset of F, we have that

NJ(Qyn —x*) — J(xr —2*)|| 2 0 as n — oo,

W (op+1 —x*) — J(zp —2*)|| = 0 as n — oo,

and
(SQyn —z*, J(Pn+1 —2*) — J(zp —2*)) >0 as n— oo.

So, b, = O(B,). And we know that ¢, is summable.
Now, let a, = ||p, — 2*||? and ¢, = B, for all n > 0. The inequality
(3.11) reduces to

Gnt+1 < (1 - tn)an + by, + cp-
It follows from Lemma 2.2 that lim,_, an = 0, so that {p,} converges
strongly to the unique solution z* of the equation z + Tz = f. 0

COROLLARY 3.1. Let E, T, and D(T) be as in Theorem 3.1. Define
S:D(T) CE— EbySz=f-Tz, "x € D(T). For arbitrary
zo € D(T), the iteration sequence {p,} with errors is defined by

Pnt+l = QnZn + ,anxn + YnlUn,

Tnt1 = QPn+1, n 20,
satisfying
oo
(i) nli_)ngo Brn=0 and Z Brn = 400,

n=0
o0
(ii) Z Y < 00,
n=0

where oy, + B + Yo = 1 (n > 0) and {u,} is a bounded subset of E. If
the sequence {Sz,} is bounded in F, then the iteration sequence {p,}
converges strongly to the unique solution z* € D(T') of the equation
z+Tz=f.
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ProoFr. This follows from Theorem 3.1 with Bn =0 and 4, = 0 for
alln > 0. O

REMARK 3.1. Note that the assumption on the range of S in Theorem
3.1 can be replaced by boundedness of {Sz,}.

REMARK 3.2. Theorem 3.1 and Corollary 3.1 improve, generalize,
and unify Theorem 3 and 5 of Chidume and Osilike ([7]), Theorem 3 of
Zhu ([16]), Theorem 2.1 and Theorem 3.1 of Liu ([12]), and Theorem 3.1
and Corollary 3.1 of Ding ([8]) in the following ways:

(1) that {u,} and {v,} be two summable sequences is replaced by
that {un} and {v,} are two bounded sequences;

(2) T may not be Lipschitz continuous;

(3) the iterative scheme may have errors terms.

If, in Theorem 3.1, D(T) = E, the use of the projection operator Q
will not be necessary. Moreover X need not be uniformly convex.

THEOREM 3.2. Let E be a real uniformly smooth Banach space and
T : E — E be a continuous accretive operator. Define S : E — E by
Sz = f — Tz, Yz € E, and suppose that the range of S is bounded. For
arbitrary xo € E, the iteration sequence {x,} with errors is defined by

Tptl = Qply + ﬁnsyn + Ynln,

Yn = GnTpn + B'nswn + Ynn, n 20,
satisfying
o0
(i) lim =0 and E%ﬂn = 400
n=—

(ii) nll)rréo Brn =0;

o]
(iii) nli)xrgo'yn =0 and ;)’yn < +00,
where ay, + Br + Yn = Gn +ﬁn +4n =1 (n>0), {u,} and {v,} are two
bounded subsets of E. Then for any zo € E, the iteration sequence {x,}

in E converges strongly to the unique solution z* € E of the equation
z+Tz=f.
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PROOF. A result of Martin ([14]) shows that T is m-accretive, and
so the equation z 4+ Tz = f has a unique solution * € E. Following the
technique of the proof of Theorem 3.1 we obtain

lTrny1 — $*||2 < (1= Bo)llen — :I:*H2 + bp + Cp,

where . .
b, = 2B {d||J (Y — =*) — J (@0 — 27}
+ (Syn — =, J(zpt1 — x*) — J(zn, — %))},
Cp = 27nd2.
The result follows as in Theorem 3.1. O

COROLLARY 3.2. Let E and T be as in Theorem 3.2. Define S : E —
E by Sx = f—Tx, Yz € E. For arbitrary =, € E, the iteration sequence
{zn} with errors is defined by

Tpitl = QnpTn + ﬁnsxn + YnlUp, N> 0,

satisfying
[e o]
(i) lim f, =0 and E_%ﬂn = +00,
[o ]
(i) Y m < +oo,
n=0

where an + Bn + Y = 1 (n > 0) and {u,} is a bounded subset of
E. If the sequence {Sz,} is bounded in E, then the iteration sequence
{z,} converges strongly to the unique solution x* € E of the equation
x+Tzx=f.

PROOF. This is obvious from Theorem 3.2 with 3, = 0 and 4, =0
for all n > 0. O

REMARK 3.3. Theorem 3.2 and Corollary 3.2 improve, generalize,
and unify Theorem 4, Theorem 6, and Corollary 2 of Chidume and
Osilike ([7]), Theorem 3.2 and Corollary 3.2 of Liu ([12]), Theorem 3.2
and Corollary 3.2 of Ding ([8]).
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We turn our attension to convergence theorems for dissipative oper-
ators. We shall be interested in the approximation of a solution of the
equation z — ATz = f, where T : D(T) C E — E is m-dissipative and A
is a real positive constant.

THEOREM 3.3. Let E be a real Banach space which is both uniformly
convex and uniformly smooth. Let T : D(T) C E — E be an m-
dissipative operator with a closed domain D(T). Define S : D(T) C
E — E by Sz = f + ATz, Yz € D(T), and suppose that the range of S
is bounded. For arbitrary xo € D(T), the iteration sequence {p,} with
errors is defined by

Pntl = Qnlp + BrSQYn + Ynin,

Yn = OnZn + anxn + 'Slnvna
Tyl = QPnt1, n 20,
satisfying
o0
(i) nli_)ngo Bn =0 and Zﬁn = +00;

n=0

(ii) nlergo Brn=0;

o0
(iif) lim 4, =0 and z%% < 00,

where an + Bn +Yn = Gn 4 B+ =1 (n>0), {us} and {v,} are two
bounded subsets of E. Then for any zo € D(T'), the iteration sequence
{pn} in E converges strongly to the unique solution z* € D(T) of the
equation x — ATz = f.

PRrROOF. Since T is m-dissipative, (—AT) is m-accretive. The result
now follows from Theorem 3.1. O

COROLLARY 3.3. Let E, T, and D(T') be as in Theorem 3.3. Define
S:D(T) c E— EbySz=f+ Az, Y2 € D(T). For arbitrary
xo € D(T), the iteration sequence {p,} with errors is defined by

Pntl = QnZn + BrSZTn + Ynln,
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Tp+1 = Qpn+17 n 2 Oa

satisfying

(1) nl.1—>n;o Bn=0 and Z%ﬂn = +00,
o)

(ii) > yn < o0,
n=0

where o, + B +n = 1 (n > 0) and {u,} is a bounded subset of E. If
the sequence {Sz,} is bounded in E, then the iteration sequence {pn}
converges strongly to the unique solution z* € D(T) of the equation
z— Mz =f.

PrOOF. The conclusion follows from Theorem 3.3 with Bn = 0 and
An = 0 for all n > 0. |

REMARK 3.4. Theorem 3.3 and Corollary 3.3 improve, generalize,
and unify Theorem 7 and Corollary 3 of Chidume and Osilike ([7]),
Theorem 3.3 and Corollary 3.3 of Ding ([8]).

THEOREM 3.4. Let E be a real uniformly smooth Banach space and
T : E — E be a continuous dissipative operator. Define S : E — E by
Sz = f + ATz, Yz € E, and suppose that the range of S is bounded.
For arbitrary xo € E, the iteration sequence {z,} with errors is defined
by
Tp+l = OpTn + BrSyn + YnUn,

Yn = OnTy + anmn + &nvna n> 0,
satisfying

(i) nh_)néo Bn. =0 and Z,@n = 400;

n=0

(ii) nli)n;o Bn =0

o0
(iii) lim 4, =0 and D Yn < o0,

n=0
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where o, + B + Yo = Gn + B +9n =1 (n > 0), {u,} and {v,} are two
bounded subsets of E. Then for any xo € E, the iteration sequence {x,}

in E converges strongly to the unique solution z* € E of the equation
z—ATz=f.

PROOF. Since T is continuous and dissipative, (—AT') is continuous
and accretive. The conclusion follows from Theorem 3.2. g

REMARK 3.5. Theorem 3.4 improves, generalizes, and unifies Theo-
rem 8 and Corollary 4 of Chidume and Osilike ([7]), Theorem 3.4 of Ding

(18))-

References

{1] F. E. Browder, Nonlinear mappings of nonezpansive and accretive type in Ba-
nach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.

, Nonlinear monotone and accretive operators in Banach spaces, Proc.
Nat. Acad. Sci. U. S. A. 61 (1968), 388-393.

[3] S. S. Chang, Some problems and results in the study of nonlinear analysis,
Nonlinear Anal. TMA 30 (1997), no. 7, 4197-4208.

[4] C. E. Chidume, An approzimation method for monotone Lipschitzian operators
in Hilbert space, J. Austral. Math. Soc. 41 (1986), 59-63.

, Iterative solution of nonlinear equations of the monotone and dissipative

types, Appl. Anal. 33 (1989), 79-86.

, Iterative solution of nonlinear equations of the monotone type in Ba-
nach spaces, Bull. Austral. Math. Soc. 42 (1990), 21-31.

(7] C.E.Chidume and M. O. Osilike, Approzimation methods for nonlinear operator
equations of the m-accretive type, J. Math. Anal. Appl. 189 (1995), 225-239.

[8] X. P. Ding, Iterative process with errors of nonlinear equations involving m-
accretive operators, J. Math. Anal. Appl. 209 (1997), 191-201.

[9] S. Ishikawa, Fized points by a new iteration method, Proc. Amer. Math. Soc. 44
(1974), 147-150.

[10] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19
(1967), 508-520.

[11] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly
accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125.

, Ishikawa type and Mann type iterative processes with errors for con-
structing solutions of nonlinear equations involving m-accretive operators in
Banach spaces, Nonlinear Anal. 34 (1998), 307-317.

(13] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),
506-510.

(2l

5]

[12]




Iterative processes 323

[14] R. H. Martin, Jr, A global ezistence theorem for autonomous differential equa-
tions in Banach spaces, Proc. Amer. Math. Soc. 26 (1970), 307-314.

[15] S. Reich, Strongly convergence theorems for resolvents of accretive operators in
Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.

(16] L. Zhu, Iterative solution of nonlinear equations involving m-accretive operators
in Banach spaces, J. Math. Anal. Appl. 188 (1994), 410-416.

Jong Yeoul Park

Department of Mathematics

Pusan National University

Pusan 609-735, Korea

E-mail: jyepark@hyowon.pusan.ac.kr

Jae Ug Jeong

Department of Mathematics

Dong-Eui University

Pusan 614-714, Korea

E-mail: jujeong@hyomin.dongeui.ac.kr



