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ALTERNATING RESOLVENT ALGORITHMS FOR FINDING

A COMMON ZERO OF TWO ACCRETIVE OPERATORS IN

BANACH SPACES

Jong Kyu Kim and Truong Minh Tuyen

Abstract. In this paper we introduce a new iterative method by the
combination of the prox-Tikhonov regularization and the alternating re-

solvents for finding a common zero of two accretive operators in Banach

spaces. And we will give some applications and numerical examples. The
results of this paper improve and extend the corresponding results an-

nounced by many others.

1. Introduction

Let E be a real Banach space. For an operator A : E → 2E , we denote its
domain, range and graph as D(A), R(A) and G(A), respectively. The inverse
A−1 of an operator A is defined by x ∈ A−1y if and only if y ∈ Ax.

An operator A is said to be accretive if for each x, y ∈ D(A), there exists
j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0

for all u ∈ Ax and v ∈ Ay. An accretive operator A is said to be maximal if
there is no proper accretive extension of A, and m-accretive if R(I + λA) = E
for all λ > 0, where I is the identity operator on E. If A is m-accretive, then
it is maximal accretive, but the reverse is not true. For an accretive operator
A, we can define, for each λ > 0, a nonexpansive single-valued mapping JAλ :
R(I + λA) −→ D(A) by

JAλ = (I + λA)−1.

It is called the resolvent of A.
We know that many problems for the nonlinear analysis and optimization

can be formulated as the form:

0 ∈ Ax,
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where A is an m-accretive operator.
Martinet [18] first introduced the proximal point algorithm which is a well-

known method for solving the equation 0 ∈ Ax, where A is a maximal monotone
operator in a Hilbert space H. For starting point x0 = x ∈ E, the proximal
point algorithm is the sequence {xn} as following:

(1.1) xn+1 = JArn(xn)

for all n ∈ N, where {rn} is a sequence of positive real numbers and N is the
set of all natural numbers.

And also, Rockafellar [24] has given a more practical method which is an
inexact variant of the method:

(1.2) xn + en 3 xn+1 + cnAxn+1

for all n ∈ N, where {en} is considered as an error sequence and {cn} is a
sequence of positive regularization parameters. We know that the algorithm
(1.2) can be written as

(1.3) xn+1 = JArn(xn + en)

for all n ∈ N. This method is called an inexact proximal point algorithm.
Rockafellar [24] proved that if en → 0 quickly enough such that

∑∞
n=1 ‖en‖ <

∞, then xn ⇀ z ∈ H with 0 ∈ Az.
Further, Rockafellar [24] presented the open question of whether the se-

quence in (1.1) converges strongly or not. In 1991, Güler [10] gave an example
that Rockafellar’s proximal point algorithm does not converge strongly, and
Bauschke, Matoušková and Reich [4] also showed that the proximal algorithm
only converges weakly but not in norm.

When A is maximal monotone in a Hilbert space H, Lehdili and Moudafi
[16] obtained the convergence of the sequence {xn} generated by the algorithm

(1.4) xn+1 = JAn
cn (xn),

where An = µnI + A is a Tikhonov regularization of A. Next, Xu [31] and
Song and Yang [26] used the technique of nonexpansive mappings to prove
the convergence theorems for {xn} defined by the perturbed version of the
algorithm (1.3) in the form

(1.5) xn+1 = JArn(tnu+ (1− tn)xn + en).

The results of Xu [31] and Song and Yang [26] have been extended by Kim and
Tuyen [15], Kim and Buong [14], Tuyen [28, 29], Sahu and Yao [25] and many
others.

Now, we consider the following problem: Find an element

(1.6) x∗ ∈ S := A−10 ∩B−10,

where A : D(A)→ 2E and B : D(B)→ 2E are two accretive operators.
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In 1930, von Neumann [19] proved that for any two closed subsets C1 and
C2 of a real Hilbert space H, the sequence of alternating projections

(1.7) H 3 x0 7→ x1 = PC1
x0 7→ x2 = PC2

x1 7→ x3 = PC1
x2 7→ · · · ,

converges strongly to a point in C1 ∩ C2 that is the nearest to the starting
x0. In 1965, Bregman [5] showed that for two arbitrary closed convex sets
C1 and C2 with nonempty intersection, the sequence {xn} generated by the
alternating projection method (1.7) converges weakly to some point in C1∩C2.
The question on whether {xn} converges strongly or not, was presented by
Hundal [11].

Let A and B be two maximal monotone operators in a Hilbert space H.
In 2005, base on the alternating projection method of von Neumann [19] and
Bregmann [5], Bauschke et al. [3] proved that the sequence {xn} generated by
the method of alternating resolvent

(1.8)

{
x2n+1 = JAλ (x2n), n = 0, 1, 2, . . . ,

x2n = JBλ (x2n−1), n = 1, 2, . . . ,

for λ > 0, converges weakly to a point of F (JAλ J
B
λ ) which is the fixed point set

of the composition JAλ J
B
λ .

The purpose of this paper is to introduce a new iteration algorithm of prox-
Tikhonov regularization method with alternating resolvents which converges
strongly to a solution of problem for finding a common zero of two accretive
operators. Our results are the improvements and generalizations of the corre-
sponding works of Lehdili and Moudafi [16], Song and Yang [26], Xu [31] and
some others.

2. Preliminaries

Let E be a real Banach space with the dual space E∗. For the sequence

{xn} in E, we denote by ‘xn → x’ (resp. xn ⇀ x, xn
∗
⇀ x) strong (resp. weak,

weak∗) convergence of the sequence {xn} to x. We use ωw({xn}) to denote the
set of weakly cluster point of the sequence {xn}.

The normalized duality mapping J from E into 2E
∗

is defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2

}
, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗

is strictly convex, then J is single-valued. Afterwards, we denote the single-
valued normalized duality mapping by j.

A Banach space E is said to have a weakly sequential continuous normalized
duality mapping, if J is single-valued and continuous from the weak topology to

the weak* topology, that is, for any {xn} ⊂ E with xn ⇀ x, then j(xn)
∗
⇀ j(x)

[6].
We use SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = 1} and F (T ) to

denote the set of fixed points of the mapping T : C ⊆ E → E.
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A Banach space E is said to be strictly convex if x, y ∈ SE with x 6= y, and,
for all t ∈ (0, 1),

‖(1− t)x+ ty‖ < 1.

A Banach space E is said to be uniformly convex if for any ε ∈ (0, 2] and
the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε, there exists a δ = δ(ε) ≥ 0
such that

‖x+ y‖
2

≤ 1− δ.

A Banach space E is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x and y in SE . In this case, the norm of E is said to be
Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if for
each y ∈ SE , this limit attained uniformly for x ∈ SE .

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0,

where the modulus of smoothness ρE : [0,∞)→ [0,∞) is defined by

ρE(t) = sup
{‖x+ y‖+ ‖x− y‖

2
− 1 : x ∈ SE , ‖y‖ ≤ t

}
.

It is well known that every uniformly smooth Banach space has a uniformly
Gâteaux differentiable norm.

A Banach space E is said to satisfy the Opial’s condition [20] if for any
sequence {xn} ⊂ E, xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x. We know that if E admits a weakly sequentially
continuous normalized duality mapping, then E satisfies the Opial’s condition.

Recall that a mapping T defined on a subset C of E is said to be demiclosed
if for any sequence {xn} in C the following implication holds:

xn ⇀ x and ‖T (xn)− y‖ → 0,

implies

x ∈ C and T (x) = y.

Lemma 2.1 ([7]). Let C be a nonempty closed and convex subset of a reflexive
Banach space E which satisfies the Opial’s condition. Suppose T : C → E is a
nonexpansive mapping. Then the mapping I − T is demiclosed on C.

A closed convex subset C of E is said to have the fixed point property for
nonexpansive mappings if every nonexpansive mapping of a nonempty closed
and convex subset M of C into itself has a fixed point in M .

A subset C of E is called a retract of E if there is a continuous mapping Q
from E onto C such that Qx = x for all x ∈ C and we call such Q a retraction
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of E onto C. It follows that if Q is a retraction, then Qy = y for all y in the
range of Q. A retraction Q is said to be sunny if

Q(Qx+ t(x−Qx)) = Qx

for all x ∈ E and t ≥ 0. If a sunny retraction Q is also nonexpansive, then C
is said to be a sunny nonexpansive retract of E [8]. We know that in a Hilbert
space H, the sunny nonexpansive retract mapping form H onto a closed convex
subset C ⊂ H is a metric projection and denoted by PC .

An accretive operator A defined on a Banach space E is said to satisfy the
range condition if D(A) ⊂ R(I + λA) for all λ > 0, where D(A) denotes the
closure of the domain of A. We know that for an accretive operator A which
satisfies the range condition, A−10 = F (JAλ ) for all λ > 0.

The following lemmas will be needed in the sequel for the proof of main
theorems.

Lemma 2.2 ([2]). Let A : D(A) → 2E be an accretive operator. Then for
λ, µ > 0, and x ∈ E, we have

JAλ x = JAµ

(
µ

λ
x+

(
1− µ

λ

)
JAλ x

)
.

Lemma 2.3 ([1]). Let E be a uniformly convex Banach space. Then for all
x, y ∈ E with max{‖x‖, ‖y‖} ≤ R and for all jx ∈ J(x), jy ∈ J(y), there exists
an increasing function g : R+ → R+ with g(0) = 0, g(t) > 0 for all t > 0 such
that

〈x− y, jx − jy〉 ≥ g(‖x− y‖)‖x− y‖.

Lemma 2.4 ([8]). Let C be a convex subset of a smooth Banach space E, D a
nonempty subset of C and P a retraction from C onto D. Then the following
statements are equivalent:

(i) P is a sunny nonexpansive mapping.
(ii) 〈x− Px, j(z − Px)〉 ≤ 0 for all x ∈ C, z ∈ D.
(iii) 〈x− y, j(Px− Py)〉 ≥ ‖Px− Py‖2 for all x, y ∈ C.

Lemma 2.5 ([21]). Let E be a Banach space. Then for every x, y ∈ E, we
have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉
for all j(x+ y) ∈ J(x+ y).

Lemma 2.6 ([30]). Let C a nonempty closed and convex subset of a Banach
space E with a uniformly Gâteaux differentiable norm, f : C → C a continuous
mapping, T : C → C a nonexpansive mapping, and {xn} a bounded sequence in
C such that limn→∞ ‖xn− Txn‖ = 0. Suppose that {zt} is a path in C defined
by zt = tfzt + (1− t)Tzt, t ∈ (0, 1) such that zt → z as t→ 0. Then we have

lim sup
n→∞

〈fz − z, j(xn − z)〉 ≤ 0.
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Lemma 2.7 ([32]). Let {an}, {bn}, {cn}, and {σn} be sequences of positive
numbers satisfying the inequality:

an+1 ≤ (1− bn)an + bncn + σn, bn < 1.

If
∑∞
n=0 bn = +∞, lim supn→∞ cn ≤ 0 and

∑∞
n=0 σn <∞, then limn→∞ an =

0.

3. Main results

Fiest we need the following conditions:

Condition A. Let {αn}, {βn}, and {γn} be sequences of positive numbers
satisfying the conditions:

(1) limn→∞ αn = 0,
∑∞
n=0 αn =∞;

(2)
∑∞
n=0 |αn+1 − αn| <∞ or limn→0 αn+1/αn = 1;

(3) (a) for all n, βn ≥ r > 0 and
∑∞
n=0 |βn+1 − βn| <∞;

(b) for all n, γn ≥ r > 0 and
∑∞
n=0 |γn+1 − γn| <∞.

Now we are in a position to introduce and prove the main theorems.

Theorem 3.1. Let C be a nonempty closed and convex subset of a reflexive
Banach space E with a weakly sequentially continuous duality mapping j. Let
A : D(A) ⊆ C → 2E and B : D(B) ⊆ C → 2E be accretive operators such
that

S := A−10 ∩B−10 6= ∅,
D(A) ⊂ C ⊂ ∩r>0R(I + rA) and D(B) ⊂ C ⊂ ∩r>0R(I + rB). Let {αn} be
a control sequence of positive numbers satisfying (1) in Condition A, and let
{βn} and {γn} be sequences in [ε,∞) for ε > 0. Let {xn} be an alternating
resolvent algorithm generated by

(3.1)

{
x2n+1 = JAβn

(αnu+ (1− αn)x2n), n = 0, 1, . . . ,

x2n = JBγn(x2n−1), n = 1, 2, . . . ,

where u and x0 are arbitrary elements in C. If the sequence {xn} is asymptot-
ically regular, then {xn} converges strongly to QSu, where QS : C → S is a
sunny nonexpansive retraction from C onto S.

Proof. First, we show that {xn} is bounded. Let p ∈ S. Then from (3.1), we
have

‖x2n+1 − p‖ ≤ ‖αn(u− p) + (1− αn)(x2n − p)‖
≤ αn‖u− p‖+ (1− αn)‖x2n − p‖
≤ αn‖u− p‖+ (1− αn)‖x2n−1 − p‖.

(3.2)

Applying induction to (3.2), then we have

‖x2n+1 − p‖ ≤
(

1−
n∏
k=0

(1− αk)
)
‖u− p‖+

n∏
k=0

(1− αk)‖x0 − p‖.
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Therefore, the sequence {x2n+1} is bounded, and so is the sequence {x2n}.
Consequently {xn} is bounded.

Next, we show that ‖x2n+1 − JAr (x2n+1)‖ → 0 and ‖x2n − JBr (x2n)‖ → 0,
where 0 < r < ε. Since

‖x2n+1 − JAβn
(x2n)‖ = αn‖u− x2n‖ → 0(3.3)

and

‖JAβn
(x2n+1)− JAβn

(x2n)‖ ≤ ‖x2n+1 − x2n‖ → 0,(3.4)

we have

(3.5)
‖x2n+1−JAβn

(x2n+1)‖ ≤ ‖x2n+1−JAβn
(x2n)‖+ ‖JAβ (x2n+1)−JAβn

(x2n)‖
→ 0.

By the resolvent identity in Lemma 2.2, we obtain

‖JAβn
(x2n+1)− JAr (x2n+1)‖

= ‖JAr
( r
βn
x2n+1 + (1− r

βn
)JAβn

(x2n+1)
)
− JAr (x2n+1)‖

≤
(
1− r

βn

)
‖x2n+1 − JAβn

(x2n+1)‖ → 0.

(3.6)

From (3.5) and (3.6), we get

‖x2n+1 − JAr (x2n+1)‖ → 0.

Similarly, we have

‖x2n − JBr (x2n)‖ → 0.

By Lemma 2.1, ωw({x2n+1}) ⊂ A−10 and ωw({x2n}) ⊂ B−10, and so
ωw({xn}) ⊂ S.

Let {yn} be the sequence defined by

(3.7)

{
y2n+1 = αnu+ (1− αn)x2n, n = 0, 1, . . . ,

y2n = x2n−1, n = 1, 2, . . . .

Then it is clear that ‖yn−xn‖ → 0 and ωw({yn}) ⊂ S. Form the last inclusion,
we have

lim sup
n→∞

〈u−QSu, j(yn −QSu)〉 = lim
k→∞

〈u−QSu, j(ynk
−QSu)〉

= 〈u−QSu, j(x−QSu)〉 ≤ 0,
(3.8)

where x = w − limk→∞ ynk
∈ S.

Let q = QSu ∈ S. From (3.7), we have

‖y2n+1 − q‖2 ≤ ‖(1− αn)(x2n − q) + αn(u− q)‖2

≤ (1− αn)2‖x2n − q‖2 + 2αn〈u− q, j(y2n+1 − q)〉
≤ (1− αn)2‖x2n−1 − q‖2 + 2αn〈u− q, j(y2n+1 − q)〉
≤ (1− αn)‖y2n−1 − q‖2 + σn,
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where σn = 2αn〈u− q, j(y2n+1 − q)〉. From (3.8), we have

lim sup
n→∞

σn
αn

= lim sup
n→∞

〈u− q, j(y2n+1 − q)〉 ≤ 0.

Hence, by Lemma 2.7, we get y2n+1 → q. Moreover, since x2n+1 − x2n → 0
and yn − xn → 0, we also have x2n+1 → q and x2n → q. Consequently, the
sequence {xn} converges strongly to a point q = QSu as n→∞. �

The following theorem was proved by Jung [12,13].

Theorem 3.2 ([12, 13]). Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm. Let C be a closed convex subset of E and let T
be a nonexpansive mapping from C into itself with F (T ) 6= ∅. If one of the
following assumptions holds:

(H1) every weakly compact convex subset of E has the fixed point property
for nonexpansive mappings;

(H2) E is strictly convex,

then the net {xt} defined by xt = tfxt + (1 − t)Txt, where f : C → C is a
contraction mapping and t ∈ (0, 1), converges strongly to a point x∗ ∈ F (T )
such that QF (T )fx

∗ = x∗.

Remark 3.1. In Theorem 3.2, if f(x) = u for all x ∈ C, then x∗ = QF (T )u,
where QF (T ) : C −→ F (T ) is a sunny nonexpansive retraction from C onto
F (T ).

Theorem 3.3. Let C be a nonempty closed and convex subset of a reflexive
and strictly convex Banach space E with a uniformly Gâteaux differentiable
norm. Let A : D(A) ⊂ C → 2E and B : D(B) ⊂ C → 2E be accretive
operators such that

S := A−10 ∩B−10 6= ∅,
D(A) ⊂ C ⊂ ∩r>0R(I+rA) and D(B) ⊂ C ⊂ ∩r>0R(I+rB). Let {αn}, {βn},
and {γn} be the sequences as in Theorem 3.1. If the sequence {xn} generated
by (3.1) is asymptotically regular, then {xn} converges strongly to QSu.

Proof. Let T1 = JAr , T2 = JBr and T = 1
2 (T1 + T2), where JAr , J

B
r are defined

as in the proof of Theorem 3.1. Since E is a strictly convex Banach space,
S = F (T ). Let {yn} be the sequence defined by (3.7). Then we have

‖yn − JAr (yn)‖ ≤ ‖yn − xn‖+ ‖xn − JAr (xn)‖
+ ‖JAr (xn)− JAr (yn)‖
≤ 2‖xn − yn‖+ ‖xn − JAr (xn)‖.

(3.9)

We show that ‖xn − JAr (xn)‖ → 0. Indeed,

‖x2n − JAr (x2n)‖ ≤ ‖x2n − x2n+1‖+ ‖x2n+1 − JAr (x2n+1)‖
+ ‖JAr (x2n+1)− JAr (x2n)‖
≤ 2‖x2n − x2n+1‖+ ‖x2n+1 − JAr (x2n+1)‖ → 0.

(3.10)
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From (3.9), (3.10) and ‖xn − yn‖ → 0, we get ‖yn − JAr (yn)‖ → 0. Similarly,
we get ‖yn − JBr (yn)‖ → 0. So, we have

‖yn − T (yn)‖ ≤ 1

2

(
‖yn − JAr (yn)‖+ ‖yn − JBr (yn)‖

)
→ 0.

Apply Theorem 3.2 and Lemma 2.6 which f(x) = u for all x ∈ C, we have

lim sup
n→0

〈u−QSu, j(yn −QSu)〉 ≤ 0.

The rest of the proof follows the pattern of Theorem 3.1. �

Lemma 3.1. Let E be a uniformly convex Banach space. If {αn}, {βn}, and
{γn} satisfy (1), (2), (3) in Condition A, then the sequence {xn} generated by
(3.1) is asymptotically regular.

Proof. Case 1. βn+1 ≤ βn: Using the resolvent identity, we write (3.1) as

x2n+1 = JAβn+1

(βn+1

βn

(
αnu+ (1− αn)x2n

)
+
(
1− βn+1

βn

)
x2n+1

)
.

Therefore,

‖x2n+3 − x2n+1‖ ≤
∥∥∥∥βn+1

βn
(1− αn)(x2n+2 − x2n)

+
(
1− βn+1

βn

)
(x2n+2 − x2n+1)

+
(
αn+1 −

βn+1αn
βn

)
(u− x2n+2)

∥∥∥∥
≤ (1− αn)‖x2n+2 − x2n‖

+
(∣∣1− βn+1

βn

∣∣+
∣∣αn+1 −

βn+1αn
βn

∣∣)K
≤ (1− αn)‖x2n+2 − x2n‖

+
(2

r
|βn+1 − βn|+ |αn+1 − αn|

)
K,

(3.11)

where K is a positive constant such that

sup
n≥0

{
‖u− x2n+2‖+ ‖x2n+2 − x2n+1‖

}
≤ K.

Case 2. βn+1 > βn: We have

x2n+3 = JAβn+1
(αn+1u+ (1− αn+1)x2n+2)

= JAβn

( βn
βn+1

(αn+1u+ (1− αn+1)x2n+2) + (1− βn
βn+1

)x2n+3

)
.
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So, we have

‖x2n+3 − x2n+1‖ ≤
∥∥∥∥( βn
βn+1

(αn+1u+ (1− αn+1)x2n+2) + (1− βn
βn+1

)x2n+3

)
− (αnu+ (1− αn)x2n)

∥∥∥∥
≤ βn
βn+1

(1− αn+1)‖x2n+2 − x2n‖

+
∣∣ βn
βn+1

αn+1 − αn
∣∣‖u− x2n‖

+
∣∣1− βn

βn+1

∣∣‖x2n − x2n+3‖

≤ (1− αn)‖x2n+2 − x2n‖

+ 2
(1

r
|βn+1 − βn|+ |αn+1 − αn|

)
M,

(3.12)

where M is a positive constant such that

sup
n≥0

{
‖u− x2n‖+ ‖x2n+3 − x2n‖+ ‖x2n+2 − x2n‖

}
≤M.

From (3.11) and (3.12), we get
(3.13)

‖x2n+3−x2n+1‖ ≤ (1−αn)‖x2n+2−x2n‖+ 2
(1

r
|βn+1−βn|+ |αn+1−αn|

)
M ′,

where M ′ = max{K,M}.
On the other hand, we have

‖x2n+2 − x2n‖ =

∥∥∥∥JBγn( γn
γn+1

x2n+1 + (1− γn
γn+1

)x2n+2

)
− JBγn(x2n−1)

∥∥∥∥
≤
∥∥∥∥(x2n+1 − x2n−1) +

(
1− γn

γn+1

)
(x2n+2 − x2n+1)

∥∥∥∥
≤ ‖x2n+1 − x2n−1‖+

(
1− γn

γn+1

)
K

≤ ‖x2n+1 − x2n−1‖+
1

r
|γn+1 − γn|M ′.

Therefore

‖x2n+3 − x2n+1‖ ≤ (1− αn)‖x2n+1 − x2n−1‖

+ 2
(1

r
|βn+1 − βn|+ |αn+1 − αn|+

1

r
|γn+1 − γn|

)
M ′.

By Lemma 2.7, we obtain

‖x2n+1 − x2n−1‖ → 0.

As a matter of fact, ‖x2n+2 − x2n‖ → 0 as well.
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Now from (3.1), we have

x2n+1 − x2n+2 + βnAx2n+1 3 αn(u− x2n) + x2n − x2n+2.

Let p ∈ S. By accretivity of A, we get

(3.14) 〈x2n+1 − x2n+2, j(x2n+1 − p)〉 ≤ αnK ′ + L‖x2n − x2n+2‖

for some positive constants K ′ and L. Similarly, multiplying the inclusion
relation

x2n+2 − x2n+1 + γn+1Bx2n+2 3 0

scalarly by j(x2n+2 − p) and using accretivity of B, we have

(3.15) 〈x2n+2 − x2n+1, j(x2n+2 − p)〉 ≤ 0.

Adding inequalities (3.14) and (3.15), and passing to the limit in the resulting
yields

(3.16) 〈x2n+2 − x2n+1, j(x2n+2 − p)− j(x2n+1 − p)〉 → 0.

By Lemma 2.3, we get

g(‖x2n+2 − x2n+1‖)‖x2n+2 − x2n+1‖ → 0.

By the properties of g, we obtain

‖x2n+2 − x2n+1‖ → 0.

Hence, ‖xn+1 − xn‖ → 0 as n→∞. �

Now, we study the strong convergence of the sequence {zn} defined by

(3.17)

{
z2n+1 = JAβn

(αnf(z2n) + (1− αn)z2n), n = 0, 1, . . . ,

z2n = JBγn(z2n−1), n = 1, 2, . . . ,

where f : C → C is a contraction mapping from C into itself with the contrac-
tion coefficient c ∈ [0, 1).

Theorem 3.4. Let C be a nonempty closed and convex subset of a uniformly
convex Banach space E with either a weakly sequentially continuous duality
mapping j or a uniformly Gâteaux differentiable norm, and let f : C → C
be a contraction mapping from C into itself. Let A : D(A) ⊂ C → 2E and
B : D(B) ⊂ C → 2E be accretive operators such that

S := A−10 ∩B−10 6= ∅,

D(A) ⊂ C ⊂ ∩r>0R(I + rA) and D(B) ⊂ C ⊂ ∩r>0R(I + rB). Let {αn},
{βn}, and {γn} be sequences satisfying (1), (2), (3) in Condition A. Then the
sequence {zn} generated by (3.17) converges strongly to an element x∗ ∈ S such
that QSf(x∗) = x∗.
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Proof. Let x∗ be a unique fixed point of QSf , that is, QSf(x∗) = x∗. From
Lemma 3.1, Theorem 3.1, Theorem 3.3, and replacing u by f(x∗) in (3.1), we
know that the sequence {xn} converges strongly to QSf(x∗) = x∗.

Now, we will prove that ‖zn − xn‖ → 0 as n→∞. Assume that

lim sup
n→∞

‖z2n+1 − x2n+1‖ > 0.

Then we can choose ε with ε ∈ (0, lim supn→∞ ‖z2n+1 − x2n+1‖). Since ‖xn −
x∗‖ → 0, there exists n1 ∈ N such that, for all n ≥ n1,

‖x2n+1 − x∗‖ <
(1− c

c

)
ε.

We divide the following two cases:

(i) There exists n2 ∈ N with n2 ≥ n1 such that ‖z2n2+1 − x2n2+1‖ ≤ ε.
(ii) ‖z2n+1 − x2n+1‖ > ε for all n ≥ n1.

In the case of (i), we have

‖z2n2+3 − x2n2+3‖ ≤ (1− αn2+1)‖z2n2+2 − x2n2+2‖
+ αn2+1‖f(z2n2+2)− f(x∗)‖
≤ [1− αn2+1(1− c)]‖z2n2+2 − x2n2+2‖

+ αn2+1c‖x2n2+2 − x∗‖
≤ [1− αn2+1(1− c)]‖z2n2+1 − x2n2+1‖

+ αn2+1c‖x2n2+1 − x∗‖
≤ ε.

By induction, we can show that ‖z2n+1 − x2n+1‖ ≤ ε for all n ≥ n2. This
contradicts to ε < lim supn→∞ ‖z2n+1 − x2n+1‖.

In the case of (ii), for each n ≥ n1, we have

‖z2n+3 − x2n+3‖ ≤ (1− αn+1)‖z2n+2 − x2n+2‖
+ αn+1‖f(z2n+2)− f(x∗)‖
≤ [1− αn+1(1− c)]‖z2n+2 − x2n+2‖

+ αn2+1c‖x2n+2 − x∗‖
≤ [1− αn+1(1− c)]‖z2n+1 − x2n+1‖

+ αn+1c‖x2n+1 − x∗‖.

So by Lemma 2.7, we get limn→∞ ‖z2n+1−x2n+1‖ = 0. This is a contradiction.
Therefore limn→∞ ‖z2n+1 − x2n+1‖ = 0. Similarly, we have limn→∞ ‖z2n −
x2n‖ = 0. So limn→∞ ‖zn − xn‖ = 0. Thus we obtain

lim
n→∞

‖zn − x∗‖ ≤ lim
n→∞

‖zn − xn‖+ lim
n→∞

‖xn − x∗‖ = 0.

This completes the proof. �
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Remark 3.2. If B = 0, then from (3.1), we get z2n = z2n−1. So, from Lemma
3.1, in Theorem 3.4 we can remove the condition that E is uniformly convex.
Hence, we have the following corollary (see Theorem 3.5 in [23]).

Corollary 3.5 ([23]). Let C be a nonempty closed and convex subset of a
reflective Banach space E with either a weakly sequentially continuous duality
mapping j or a uniformly Gâteaux differentiable norm such that every weakly
compact convex subset of E has fixed point property for nonexpansive mappings,
and let f : C → C be a contraction mapping from C into itself. Let A : D(A) ⊂
C → 2E be an accretive operator such that

S := A−10 6= ∅,

and D(A) ⊂ C ⊂ ∩r>0R(I + rA). Let {αn} and {βn} be sequences satisfying
(1), (2), (3)-(a) in Condition A. Then the sequence {zn} generated by

(3.18) zn+1 = JAβn
(αnf(zn) + (1− αn)zn), z0 ∈ C, n = 0, 1, 2, . . . ,

converges strongly to an element x∗ ∈ S such that QSf(x∗) = x∗.

Remark 3.3. This corollary is a generalization of the result of Sahu and Yao
(see Theorem 3.5 in [25]).

We know that every m-accretive operator satisfies the range condition. So
we have the following result.

Theorem 3.6. Let E be a uniformly convex Banach space with either a weakly
sequentially continuous duality mapping j or a uniformly Gâteaux differentiable
norm and let f : E → E be a contraction mapping in E. Let A : E → 2E and
B : E → 2E be m-accretive operators such that

S := A−10 ∩B−10 6= ∅.

Let {αn}, {βn}, and {γn} be sequences satisfying (1), (2), (3) in Condition A,
and {en} and {e′n} be the sequences of errors satisfying the conditions:

(4) (a)
∑∞
n=0 ‖en‖ <∞ or limn→∞ ‖en‖/αn = 0;

(b)
∑∞
n=0 ‖e′n‖ <∞ or limn→∞ ‖e′n‖/αn = 0.

Then the sequence {un} generated by u0 ∈ E and

(3.19)

{
u2n+1 = JAβn

(αnf(u2n) + (1− αn)u2n + en), n = 0, 1, . . . ,

u2n = JBγn(u2n−1 + e′n), n = 1, 2, . . . ,

converges strongly to an element x∗ ∈ S such that QSf(x∗) = x∗,

Proof. We have

‖u2n+1 − z2n+1‖ ≤ αn‖f(u2n)− f(z2n)‖+ (1− αn)‖u2n − z2n‖+ ‖en‖+ ‖e′n‖
≤ [1− αn(1− c)]‖u2n − z2n‖+ ‖en‖+ ‖e′n‖
≤ [1− αn(1− c)]‖u2n−1 − z2n−1‖+ ‖en‖+ ‖e′n‖.
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By Lemma 2.7, we have ‖u2n+1 − z2n+1‖ → 0. Similarly, ‖u2n − z2n‖ → 0. So
we have ‖un − zn‖ → 0 as n→∞. Thus we obtain

lim
n→∞

‖un − x∗‖ ≤ lim
n→∞

‖un − zn‖+ lim
n→∞

‖zn − x∗‖ = 0.

This completes the proof. �

Apply Theorem 3.6 with Bx = 0 for all x ∈ E, we obtain the following
corollary (see [23]).

Corollary 3.7 ([23]). Let E be a reflective Banach space with either a weakly
sequentially continuous duality mapping j or a uniformly Gâteaux differentiable
norm such that every weakly compact convex subset of E has fixed point property
for nonexpansive mappings and let f : E → E be a contraction mapping in E.
Let A : E → 2E be an m-accretive operator such that

S := A−10 6= ∅.
Let {αn} and {βn} be sequences of positive numbers satisfying (1), (2), (3)-(a)
in Condition A, and {en} be a sequence of errors in E satisfying the condition
(4)-(a) in Theorem 3.6. Then the sequence {un} generated by u0 ∈ E and

un+1 = JAβn
(αnf(un) + (1− αn)un + en), n = 0, 1, . . . ,(3.20)

converges strongly to an element x∗ ∈ S such that QSf(x∗) = x∗.

Remark 3.4. This corollary contains the result of Sahu and Yao (see Theorem
3.7 in [25]).

And also, we can get the same results in Hilbert spaces.

Corollary 3.8. Let H be a Hilbert space. Let A : H → 2H and B : H → 2H

be maximal monotone operators such that

S := A−10 ∩B−10 6= ∅.
Let f : H → H be a contraction mapping in H. Let {αn}, {βn}, and {γn}
be sequences satisfying (1), (2), (3) in Condition A, and {en} and {e′n} be the
sequences of errors in H satisfying the condition (4) in Theorem 3.6. Then
the sequence {un} generated by (3.19) converges strongly to an element x∗ ∈ S
such that PSf(x∗) = x∗, where PS : H → S is a metric projection from H onto
S.

Corollary 3.9. Let H be a Hilbert space. Let A : H → 2H be a maximal
monotone operator such that

S := A−10 6= ∅.
Let f : H → H be a contraction mapping in H. Let {αn} and {βn} be sequences
of positive numbers satisfying (1), (2), (3)-(a) in Condition A, and {en} be a
sequence of errors in H satisfying the condition (4)-(a) in Theorem 3.6. Then
the sequence {un} generated by (3.20) converges strongly to an element x∗ ∈ S
such that PSf(x∗) = x∗.
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Remark 3.5. Corollary 3.9 is more general than the results of Xu [32], Song
and Yang [26]. When f(x) = u for all x ∈ H, we obtain Theorem 3.2 of Xu in
[32].

4. Applications

In this section, we give some applications in the framework of Hilbert spaces.
First, we give an application for the convex minimization problem.

Theorem 4.1. Let H be a Hilbert space and let f1, f2 : H → (−∞,∞] be two
proper lower semicontinuous convex functions such that

S := (∂f1)−10 ∩ (∂f2)−10 6= ∅.

Let f : H −→ H be a contraction mapping. Let {αn}, {βn}, and {γn} be
sequences satisfying (1), (2), (3) in Condition A. Then the sequence {xn} gen-
erated by x0 ∈ H and

(4.1)


yn = αnf(x2n) + (1− αn)x2n, n = 0, 1, . . . ,

x2n+1 = argminx∈H

{
f1(x) +

1

2βn
‖yn − x‖2

}
, n = 0, 1, . . . ,

x2n = argminx∈H

{
f2(x) +

1

2γn
‖x2n−1 − x‖2

}
, n = 1, 2, . . . ,

converges strongly to an element x∗ ∈ S such that PSf(x∗) = x∗.

Proof. By the Rockafellar theorem [22], the subdifferential mappings ∂f1 and
∂f2 are maximal monotone operators in H. So,

x2n+1 = argminx∈H

{
f1(x) +

1

2βn
‖x− yn‖2

}
is equivalent to βn∂f1(x2n+1) + x2n+1 3 yn, that is,

x2n+1 = JAβn

(
αnf(x2n) + (1− αn)x2n

)
,

with A = ∂f1 and

x2n = argminx∈H

{
f2(x) +

1

2γn
‖x2n−1 − x‖2

}
is equivalent to γn∂f2(x2n) + x2n 3 x2n−1, that is,

x2n = JBγn(x2n−1),

with B = ∂f2. Using Corollary 3.8, {xn} converges strongly to an element
x∗ ∈ S. This completes the proof. �

Corollary 4.2. Let H be a Hilbert space and let h : H → (−∞,∞] be a proper
lower semicontinuous convex function such that

S := (∂h)−10 6= ∅.
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Let f : H −→ H be a contraction mapping. Let {αn} and {βn} be sequences
satisfying (1), (2), (3)-(a) in Condition A. Then the sequence {xn} generated
by x0 ∈ H and

(4.2)

yn = αnf(xn) + (1− αn)xn, n = 0, 1, . . . ,

xn+1 = argminx∈H

{
h(x) +

1

2βn
‖yn − x‖2

}
, n = 0, 1, . . . ,

converges strongly to an element x∗ ∈ S such that PSf(x∗) = x∗.

Let C be a closed convex subset of a Hilbert space H. Recall that the
indicator function of C is defined by

iC(x) =

{
0 if x ∈ C;

∞ if x /∈ C

and the normal cone for C at a point x ∈ C is defined by

NC(x) =
{
z ∈ H : 〈y − x, z〉 ≤ 0 for all y ∈ C

}
.

We know that iC is a proper lower semicontinuous convex function and
argmin iC = C. So the problem of finding a common element of two closed
convex subsets C1 and C2 in a Hilbert space H is equivalent to the problem of
finding an element of the set S = argmin iC1

∩ argmin iC2
. From Theorem 4.1,

we have the following result.

Theorem 4.3. Let C1 and C2 be two nonempty closed and convex subsets of
a Hlbert space H such that

S := C1 ∩ C2 6= ∅.

Let f : H → H be a contraction mapping. Let {αn} be a sequence satisfying
(1), (2) in Condition A. Then the sequence {xn} generated by x0 ∈ H,

(4.3)

{
x2n+1 = PC1

(
αnf(x2n) + (1− αn)x2n

)
, n = 0, 1, 2, . . . ,

x2n = PC2
(x2n−1), n = 1, 2, . . . ,

converges strongly to x∗ ∈ S such that PSf(x∗) = x∗.

Proof. First, we have S = argmin iC1 ∩ argmin iC2 . So, apply Theorem 4.1 for
f1 = iC1

and f2 = iC2
, and using the equality (I + r∂iC)−1 = (I + rNC)−1 =

PC for all closed convex subset in H and for all r > 0, we can prove this
theorem. �

Remark 4.1. Theorem 4.3 is an extension of the Bregman’s results in [5].

We next apply Corollary 3.8 to find a common solution of the convex mini-
mization problem and the variational inequality problem.
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Let C be a nonempty closed and convex subset of a Hilbert space H and let
A : C → H be a single-valued monotone operator which is hemicontinuous. A
point u ∈ C is said to be a solution of the variational inequality for A if

〈y − u,Au〉 ≥ 0

holds for all y ∈ C. We denote by V I(C,A) the set of all solutions of the
variational inequality for A.

Theorem 4.4. Let C be a nonempty closed and convex subset of a Hilbert
space H, h : H → (−∞,∞] be a proper lower semicontinuous convex function,
and A : C → H be a single-valued monotone operator and hemicontinuous such
that

S := (∂h)−10 ∩ V I(C,A) 6= ∅.
Let f : H → H be a contraction mapping in H. Let {αn}, {βn}, and {γn}
be sequences satisfying (1), (2), (3) in Condition A. Then the sequence {xn}
generated by x0 ∈ H and

(4.4)


yn = αnf(x2n) + (1− αn)x2n, n = 0, 1, . . . ,

x2n+1 = argminx∈H

{
h(x) +

1

2βn
‖yn − x‖2

}
, n = 0, 1, . . . ,

x2n = V I(C, γnA+ I − x2n−1), n = 1, 2, . . . ,

converges strongly to x∗ ∈ S such that PSf(x∗) = x∗.

Proof. Define a mapping T ⊂ H ×H by

Tx =

{
Ax+NC(x), x ∈ C
∅, x /∈ C.

By the Rockafellar theorem [23], we know that T is maximal monotone and
T−10 = V I(C,A). Note that

x2n = V I(C, γnA+ I − x2n−1)

if and only if
〈y − x2n, γnAx2n + x2n − x2n−1〉 ≥ 0

for all y ∈ C, that is,

−γnAx2n − x2n + x2n−1 ∈ γnNC(x2n).

This implies that x2n = JTγn(x2n−1). By Corollary 3.8 and the proof of Theorem
4.1, we obtain the proof of this theorem. �

From Corollary 3.8 and the proof of Theorem 4.3, we have the following
theorem.

Theorem 4.5. Let C1 and C2 be two nonempty closed and convex subsets of a
Hilbert space H and let Ai : Ci → H (i = 1, 2) be two single-valued monotone
and hemicontinuous operators such that

S := V I(C1, A1) ∩ V I(C2, A2) 6= ∅.
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Let f : H → H be a contraction mapping in H. Let {αn}, {βn}, and {γn}
be sequences satisfying (1), (2), (3) in Condition A. Then the sequence {xn}
generated by x0 ∈ H and

(4.5)


yn = αnf(x2n) + (1− αn)x2n, n = 0, 1, . . . ,

x2n+1 = V I(C1, βnA1 + I − yn), n = 0, 1, . . . ,

x2n = V I(C2, γnA2 + I − x2n−1), n = 1, 2, . . . ,

converges strongly to x∗ ∈ S such that PSf(x∗) = x∗.

Corollary 4.6. Let C be a nonempty closed and convex subset of a Hilbert
space H and let A : C → H be a single-valued monotone and hemicontinuous
operator such that

S := V I(C,A) 6= ∅.

Let f : H → H be a contraction mapping in H. Let {αn} and {βn} be sequences
satisfying (1), (2), (3)-(a) in Condition A. Then the sequence {xn} generated
by x0 ∈ H and

(4.6)

{
yn = αnf(xn) + (1− αn)xn, n = 0, 1, . . . ,

xn+1 = V I(C, βnA+ I − yn), n = 0, 1, . . . ,

converges strongly to x∗ ∈ S such that PSf(x∗) = x∗.

Finally, we give an application for the equilibrium problem. Let C be a
nonempty, closed and convex subset of a Hilbert space H. Let F be a bifunction
of C ×C into R, where R denotes the set of real numbers. Recall the following
equilibrium problem: Finding x ∈ C such that

(4.7) F (x, y) ≥ 0,∀y ∈ C.

We denote by EP (F ) the set of all solutions of equilibrium problem (4.7). To
study the equilibrium problem, we may assume that bifunction F satisfies the
following restrictions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) For each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) For each x ∈ C, y 7−→ F (x, y) is convex and lower semi-continuous.

We need the following lemma for the next theorem.

Lemma 4.1 ([27]). Let F be a bifunction from C × C to R which satisfies
(A1)-(A4), and let AF be a multi-valued mapping of H into itself defined by

AFx =

{{
z ∈ H : F (x, y) ≥ 〈y − x, z〉, ∀y ∈ C

}
, x ∈ C,

∅, x /∈ C.
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Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C,
EP (F ) = A−1F 0, and the resolvent Tr = (I + rAF )−1 is defined by

Trx =

{
z ∈ C : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ H.

From Lemma 4.1 and Corollary 3.8, we have the following theorem.

Theorem 4.7. Let C be a nonempty closed and convex subset of a Hilbert space
H. Let Fm : C × C → R, m = 1, 2 be two bifunctions satisfying (A1)-(A4)
such that

S := EP (F1) ∩ EP (F2) 6= ∅.
Let f : H → H be a contraction mapping in H. Let {αn}, {βn}, and {γn}
be sequences satisfying (1), (2), (3) in Condition A. Then the sequence {xn}
generated by x0 ∈ H and

(4.8)

{
x2n+1 = Tβn

(
αnf(x2n) + (1− αn)x2n

)
n = 0, 1, . . . ,

x2n = Tγn(x2n−1), n = 1, 2, . . . ,

converges strongly to x∗ ∈ S such that PSf(x∗) = x∗.

5. Numerical examples

In this section, we have tested the proposed algorithm in Theorem 4.1.

The algorithm is implemented in Matlab 7.0 running on a HP Compaq 510,
Core(TM) 2 Duo CPU. T5870 with 2.0 GHz and 2GB RAM.

Example 5.1. Consider the problem for finding an element

x∗ ∈ S := (∂f1)−10 ∩ (∂f2)−10 6= ∅,
that is,

x∗ ∈ S = argminx∈R3f1(x) ∩ argminx∈R3f2(x),

where f1 and f2 are defined by

fi(x) = 〈Aix, x〉+ 〈Bi, x〉+ Ci, i = 1, 2

with

A1 =

 1 1 −1
1 1 −1
−1 −1 1

 , A2 =

1 1 0
1 1 0
0 0 0

 ,

B1 =
(
−4 −4 4

)
, B2 =

(
−4 −4 0

)
, C1, C2 are any constants.

It is easy to show that f1 and f2 are proper continuous convex functions on
R3, and

S = {(x1, x2, x3) ∈ R3 : x1 + x2 = 2, x3 = 0}.
Apply Theorem 4.1 for f(x) = u for all x ∈ R3 with u =

(
1 2 −1

)
and

αn = 1/(n + 1), βn = γn = 1 for all n ≥ 0, we obtain the following table of
numerical results.
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Table 1. The exact solution PSu =
(
0.5 1.5 0

)
n xn1 xn2 xn3 n xn1 xn2 xn3

100 0.498749 1.498750 −0.017499 600 0.499791 1.499791 −0.002916
200 0.499374 1.499375 −0.008749 700 0.499821 1.499821 −0.002499
300 0.499583 1.499583 −0.005833 800 0.499843 1.499843 −0.002187
400 0.499687 1.499687 −0.004374 900 0.499861 1.499861 −0.001944
500 0.499749 1.499750 −0.003499 1000 0.499874 1.499875 −0.001749

Example 5.2. Let f : R2 → R be a function defined by

f(x) = 〈A1x, x〉+ 〈B1, x〉+ C1,

where

A1 =

(
1 −2
−2 4

)
, B1 =

(
4 −8

)
, C1 is any constant.

Consider the problem: Finding an element

x∗ ∈ S := argminx∈Cf(x),

where
C =

{
(x1, x2) ∈ R2 : x1 + x2 ≥ 2

}
.

It is easy to see that f is a convex function on R2 and

argminx∈Cf(x) =
{

(x1, x2) : x1 − 2x2 + 2 = 0, x1 ≥ 2/3
}
.

We know that
x∗ ∈ argminx∈Cf(x)

if and only if
5f(x∗) +NC(x∗) 3 0,

that is, x∗ is a solution of the following inequality

〈y − x,5f(x)〉 ≥ 0, ∀y ∈ C.
Apply Corollary 4.6 with αn = 1

n+1 , βn = 1 for all n, f(x) = u =
(
1 4

)
,

x0 =
(
0 0

)
and using the projected gradient method [9, 17] with µ = 1/80 to

solve the inequality

xn+1 = V I(C,A+ I − yn), n = 0, 1, . . . ,

we obtain the following table of numerical results. Note that A = 5f and
A+ I − yn is 11-Lipschitz and η-strongly monotone over R2, with η ≥ 1.

Table 2. The exact solution PSu =
(
2 2

)
n xn1 xn2 n xn1 xn2

100 1.999000 2.002000 600 1.999833 2.000333
200 1.999500 2.001000 700 1.999857 2.000285
300 1.999666 2.000666 800 1.999875 2.000250
400 1.999750 2.000500 900 1.999888 2.000222
500 1.999800 2.000400 1000 1.999900 2.000200
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