• 제목/요약/키워드: a-C:H films

검색결과 1,301건 처리시간 0.026초

DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구 (DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board)

  • 김형철;나사균;이연승
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Sputtering에 의한 CdTe박막제조 및 CdTe/CdS태양전지에의 응용 (Fabrication of CdTe thin films by sputtering and its application on CdTe/CdS solar cells)

  • 정해원;이천;김신;신성호;박광자
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1645-1647
    • /
    • 1996
  • Polycrystalline CdTe thin films -have been studied for photovoltaic application because of their high absorption coefficient and optimal band gap energy (1.54 eV) for solar energy conversion. In this study, we prepared CdTe films using RF-magnetron sputtering method and investigated structural, optical and electrical properties with spectrophotometer, XRD, EDX, and resistivity meter. CdTe films at $200\;^{\circ}C$ showed a mixture of zinc blend (Cubic) and wurtzite (hexagonal) phase. On the other hand, the films at $400\;^{\circ}C$ showed highly oriented structure having hexagonal structure. The resistivity of CdTe films deposited on $SiO_2$ substrates was about $10_7\;{\Omega}cm$. The value of resistivity decreased with the increase of the substrate temperature. CdTe were sputtered on CdS thin films prepared by chemical bath deposition for the formation of the heterojunction. I-V characteristics of these cells were measured at a light density of $100mw/cm^2$, AM. 1.0. The present thin film solar cells showed a conversion efficiency of about 5%.

  • PDF

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • 전기화학회지
    • /
    • 제6권4호
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

RF 마그네트론 스퍼터링법에 의한 a-축 배향 $YBa_2Cu_3O_{7-\delta}$박막의 제조 (Preparation of a axis oriented $YBa_2Cu_3O_{7-\delta}$ thin films by RF magnetron sputtering)

  • 이재준;김영환;신진;이경희;최상삼;한택상
    • 한국재료학회지
    • /
    • 제4권4호
    • /
    • pp.459-465
    • /
    • 1994
  • a-측으로 배향된 $YBa_2Cu_3O_{7-\delta}$ 고온 초전도 박막을 $LaAIO_{3}$(100)단결정 기판에 이중 타게트 off-axis rf마그네트론 스퍼터링법으로 증착하였다. 박막은 기판온도(Ts)$590^{\circ}C$$680^{\circ}C$사이에서 단일공정으로 증착하는 one-step방법과, $590^{\circ}C$의 저온에서 a-축으로 배향된 YBCO박막(두께-30nm)을 면저 만들어 틀로 작용시킨 후 그 틀위에 나머지 부분을 기판온도를 승온하면서 증착하는 방법인 two-step방법 등 두 가지 방법을 사용하여 증착시켰다. one-step방법에서는 $T_s$가 증가함에 따라 감소하였으며, ($00 \ell$)피크는 증가하였다. Two-step방법으로 증착한 박막은 증착속도가 감소함에 따라 (h00)피크가 우세하게 나타났다. 박막의 미세구조는 a-축, c- 축 배향성이 혼재하여 핀홀과 같은 결함들이 생성되었다. 모든 경우 $T_s$가 감소함에 따라 a-축 배향성은 우세하였으나 전기적 특성은 저하되었고, 긴 전이온도 폭을 가졌다.

  • PDF

스퍼터링법으로 합성한 BCN 박막의 내식성 (Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering)

  • 변응선;손명숙;이구현;권식철
    • 한국표면공학회지
    • /
    • 제36권3호
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.

WC/C 다층박막의 합성 및 기계적 특성에 관한 연구 (A study on the synthesis and mechanical properties of WC/C multilayered films)

  • 명현식;한전건
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).

EAHFCVD법에 의한 c-BN 박막형성기구와 계면층의 특성에 관하여 (Characteristics on Boundary Layer and Formation Mechanism of c-BN Thin Films During Electron Assisted Hot Filament CVD Process)

  • 최용;최진일
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.89-93
    • /
    • 2012
  • c-BN films were deposited on SKH-51 steels by electron assisted hot filament CVD method and microstructure development was studied processing parameters such as bias voltage, temperature, etching and phase transformation at boundary layer between BN compound and steel to develop a high performance wear resistance tools. A negative bias voltage higher than 200V at substrate temperature of $800^{\circ}C$ and gas pressure of 20 torr in B2H6-NH3-H2 gas system was one of optimum conditions to produce c-BN films on the SKH-51 steels. Thin layer of hexagonal boron nitride phase was observed at the interface between c-BN layer and substrate.

TMS를 이용한 SiC 나노박막의 성장연구 (Study on Growth of Nanocrystalline SiC Films Using TMS)

  • 양재웅
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.174-178
    • /
    • 2005
  • Chemical vapor deposition technique has been used to grow epitaxial SiC thin films on Si wafers using tetramethylsilane(TMS) precursor. The films were observed to grow along (110) direction of 3C-SiC at $800^{\circ}C$. The quality of the films was significantly influenced by the TMS flow rate and growth temperature. Nanocrystal SiC films were grown at flow rates of TMS 10 sccm with $H_2$ carrier gas of 100 sccm. The temperature and gas pressure in the reactor have a great influence on the crystallinity and morphology of the SiC film grown. The growth mechanism of the SiC film on the Si substrate without the carbonization process was discussed based on the experimental results.

수소가스분위기하에서의 SnO2 박막의 전기적 거동 (Electrical Behaviors of SnO2 Thin Films in Hydrogen Atmosphere)

  • 김광호;박희찬
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.341-348
    • /
    • 1988
  • Thin films of tin-oxide were prepared by chemical vapor deposition technique using the direct of SnCl4. Resistivity and carrier concentration of deposited SnO2 thin film were measured by 4-point probe method and Hall effect measurement. The results showed the remarkable dependence of electrical properties on the deposition temperature. As the deposition temperature increased, resistivity of deposited film initially decreased to a minimum value of ~10-3$\Omega$cm at 50$0^{\circ}C$, and then rapidly increased to ~10$\Omega$cm at $700^{\circ}C$. Electrical conductance of these films was measured in exposure to H2 gas. It was found that gas sensitivity was affected combination of film thickness and intrinsic resistivity of deposited film. Gas sensitivity increased with decrease of film thickness. Fairly high sensitivity to H2 gas was obtained for the film deposited at $700^{\circ}C$. Optimum operation temperature of sensing was 30$0^{\circ}C$ for H2 gas.

  • PDF

상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성 (Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature)

  • 이중기;전법주;현진;변동진
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.