Study on Growth of Nanocrystalline SiC Films Using TMS

TMS를 이용한 SiC 나노박막의 성장연구

  • Yang Jae-Woong (Dept. of Advanced Materials Science and Engineering, Daejin Univ.)
  • Published : 2005.08.01

Abstract

Chemical vapor deposition technique has been used to grow epitaxial SiC thin films on Si wafers using tetramethylsilane(TMS) precursor. The films were observed to grow along (110) direction of 3C-SiC at $800^{\circ}C$. The quality of the films was significantly influenced by the TMS flow rate and growth temperature. Nanocrystal SiC films were grown at flow rates of TMS 10 sccm with $H_2$ carrier gas of 100 sccm. The temperature and gas pressure in the reactor have a great influence on the crystallinity and morphology of the SiC film grown. The growth mechanism of the SiC film on the Si substrate without the carbonization process was discussed based on the experimental results.

Keywords

References

  1. D. A. Anderson, W. E. Spear, Philos. Mag., 35 (1976) 1 https://doi.org/10.1080/14786437708235967
  2. P. A. Ivanov, V. E. Chelo, Semicond. Sci. Technol., 7 (1992) 863 https://doi.org/10.1088/0268-1242/7/7/001
  3. S. Nahano, Y. Kishi, M. Ohnishi, S. Tsuda, Shibuya H., N. NaKamura, Y. Hishikawa, H. Tami, T. Takahawa, Y. Kuwano, Mat. Res. Soc. Symp. Proc., 49 (1992) 4757
  4. Y. Hamakawa, Y. Matsumoto, G. HIrata, Mat. Res. Soc. Symp. Proc., 164 (1989) 291
  5. A. M. Haghri-Gosnet, J. Vac. Sci. Technol., 4 (1990) 1565
  6. T. TeraShige, K. Okano, IEEE Trans. Electron Dev., 46 (1999) 642
  7. J. W. Yang, D. H. Rho, J. K. Yun, J. S. Kim, J. Kor. Inst. Surf. Eng., 36 (2003) 141
  8. A. Ishizaka, Y. Shiraka, J. Electrochem. Soc., 133 (1986) 666 https://doi.org/10.1149/1.2108651
  9. Marius D. Stanate, Appl. Surf. Science 172 (2001) 4750
  10. M. T. Kim, J. Lee, Thin Solid Films, 303 (1997) 173 https://doi.org/10.1016/S0040-6090(97)00137-5
  11. F. Yan, Y. D. Zhang, P. Chen, L. Sun, S. L. Gu, Optical Mat., 23 (2003) 113 https://doi.org/10.1016/S0925-3467(03)00070-3
  12. A. M. Wrobel, S. Wickramanayaka, Y. Nakanishi, Y. Fukuba, Y. Hatanaka, Chem. Mater, 7 (1995) 1403 https://doi.org/10.1021/cm00055a020
  13. A. M. Wrobel, S. Wickranmanayaka, K. Kitamura, Y. Nakamishi, Y. Hatanaka, Chem. Vap. Deposition, 6 (2000) 315 https://doi.org/10.1002/1521-3862(200011)6:6<315::AID-CVDE315>3.0.CO;2-7
  14. Y. Y. Xu, T. Muramatsu, T. Aoki, Y. Hatanaka, Mat. Res. Soc. Symp. Proc., 544 (1999) 185
  15. A. L. Smith, Analysis of Silicones Wiley, New York, 1974 Neuauflage, Krieger Malabar 1983
  16. H. Zhang, Z. Xu, Optical Mat., 20 (2002) 177 https://doi.org/10.1016/S0925-3467(02)00046-0
  17. Y. Avigal, M. Schieber, R. Levin, J. Cryst. Growth. 24 (1974) 188 https://doi.org/10.1016/0022-0248(74)90302-9
  18. N. Herin, M. Lefehvere, M. Pealat, J. Perrin, J. Phys. Lett., 31 (1992) L379
  19. K. Takahashi, S. Nishino, J. Saraie, J. Electrochem. Soc., 139 (1992) 3565 https://doi.org/10.1149/1.2069122
  20. S. Veinteemnillas, V. Madigou, R. RodriguezClenente, A. Figueras, J. Cryst. Growth, 148 (1995) 383 https://doi.org/10.1016/0022-0248(94)00645-8
  21. D. F. Helm, E. Mack, J. Am. Chem. Soc., 59 (1937) ,6017
  22. K. J. Sladek, J. Electrochem. Soc., 118 (1971) 654 https://doi.org/10.1149/1.2408134