• 제목/요약/키워드: a singular perturbation

검색결과 109건 처리시간 0.021초

A UNIFORMLY CONVERGENT NUMERICAL METHOD FOR A WEAKLY COUPLED SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND WEAK INTERIOR LAYERS

  • CHAWLA, SHEETAL;RAO, S. CHANDRA SEKHARA
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.635-648
    • /
    • 2015
  • We consider a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous source term. The diffusion term of each equation is associated with a small positive parameter of different magnitude. Presence of discontinuity and different parameters creates boundary and weak interior layers that overlap and interact. A numerical method is constructed for this problem which involves an appropriate piecewise uniform Shishkin mesh. The numerical approximations are proved to converge to the continuous solutions uniformly with respect to the singular perturbation parameters. Numerical results are presented which illustrates the theoretical results.

[ $H_{\infty}$ ] Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.501-507
    • /
    • 2007
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

리셋 와인드엎 방지법에 기초한 상태 제한이 존재하는 제어 시스템의 보상 방법 (Anti-Reset windup basd compensation method for state constrained control systems)

  • 박종구
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.511-520
    • /
    • 1999
  • An anti-reset windup (ARW) based compensation method for state constrained control systems is studied. First, a linear controller is constructed to give a desirable nominal performance ignoring state-constraints of a plant. Then, an additional compensator is introduced to provide smooth performance degradation under state-constraints of the plant. This paper focuses on the effective design method of the additional compensator. By minimizing a reasonable performance index, the proposed compensator is expressed in terms of theplant and ocntroller parameters. The resulting dynamics of the compensated controller exhibits the dominant part of the linear closed-loop system which can be seen from the singular perturbation model reducton theory. THe proposed method guarantees total stability of overall resulting systems if linear controllers were constructed to meet certain condition.

  • PDF

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.

Coprime Factor Reduction of Parameter Varying Controller

  • Saragih, Roberd;Widowati, Widowati
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.836-844
    • /
    • 2008
  • This paper presents an approach to order reduction of linear parameter varying controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities for constructing full-order parameter varying controller evaluated at each polytopic vertices are first found. Next, sufficient conditions are derived for the existence of a right coprime factorization of parameter varying controller. Furthermore, a singular perturbation approximation for time invariant systems is generalized to reduce full-order parameter varying controller via parameter varying right coprime factorization. This generalization is based on solutions of the parameter varying Lyapunov inequalities. The closed loop performance caused by using the reduced order controller is developed. To examine the performance of the reduced-order parameter varying controller, the proposed method is applied to reduce vibration of flexible structures having the transverse-torsional coupled vibration modes.

자동변속기의 과도토크 저감을 위한 비선형 제어기설계 (Nonlinear Control Design for Reducing Shifting Torque in Automatic Transmission)

  • Kim, D.H.;Lee, K.I.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.95-104
    • /
    • 1997
  • We consider controller design problem to enhance shift quality for automatic transmission. A dynamic modeling related to shifting (mainly 2-3 up-shift) is constructed and nonlinear robust controllers are designed to reduce output torque during shifting. Suggesting a new hydraulic circuit enabling the direct clutch drive, the control activity is extended and more implementable than the conventional design. The designed robust controllers overcome the unmodeled dynamics and the uncertainty embending in the system. Moreover, the dynamic effect between the clutch pressure and the PWM valve duty is considered via singular perturbation technique.

  • PDF

유연관절로봇의 적응신경망제어 (Adaptive Neural Network Control of a Flexible Joint Manipulator)

  • 구치욱;이시복;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.101-106
    • /
    • 1997
  • This paper proposes a stable adaptive neural network control(NNC) for fixable joint manipulators. For designing the stable adaptive NNC, the flexible system dynamics is separated into fast and slow subdynamics according to singular perturbation concept. For the slow subdynamics, an adaptive NNC is designed to warrant the system stability and NN learning by lyapunov stability criterion. And to stabilize the fast dynamics, derivative control loop is installed. Through numerical simulation, the performance of the proposed NNC was compared to that of an adaptive controller designed based on the knowledge of the system dynamics. The proposed NNC shows much improvement over the conventional adaptive controller.

  • PDF

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

굴곡형 격자도파로에서 비스듬히 입사하는 파동에 대한 모드 결합현상:특이접동 방법에 의한 해석 (Mode Coupling at Oblique Incidence in a Corrugated Dielectric Waveguide: Analysis by the Singular Perturbation Method)

  • 김홍구;신상영
    • 대한전자공학회논문지
    • /
    • 제23권1호
    • /
    • pp.27-35
    • /
    • 1986
  • The optical wave interactions in a sinusoidally corrugated dielectric waveguide are analyzed for the oblique incidence case. The coupled mode equations which govern the interactions are derived by the singular perturbation method for the TE-TE mode coupling. The results are compared with those of normal mode analysis by Wagatsuma et al. and total field analysis by Stegeman et al. Phase mismatching effects on the diffraction efficiency are also investigated.

  • PDF