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Coprime Factor Reduction of Parameter Varying Controller

Roberd Saragih and Widowati

Abstract: This paper presents an approach to order reduction of linear parameter varying
controller for polytopic model. Feasible solutions which satisfy relevant linear matrix inequalities
for constructing full-order parameter varying controller evaluated at each polytopic vertices are
first found. Next, sufficient conditions are derived for the existence of a right coprime
factorization of parameter varying controller. Furthermore, a singular perturbation approximation
for time invariant systems is generalized to reduce full-order parameter varying controller via
parameter varying right coprime factorization. This generalization is based on solutions of the
parameter varying Lyapunov inequalities. The closed loop performance caused by using the
reduced order controller is developed. To examine the performance of the reduced-order
parameter varying controller, the proposed method is applied to reduce vibration of flexible
structures having the transverse-torsional coupled vibration modes.

Keywords: Parameter varying controller, polytopic systems, reduced-order controller, right

coprime factorization, singular perturbation method.

1. INTRODUCTION

Design techniques for constructing parameter
varying controller with guaranteed Ho performance
lead to controllers with order equal to the sum of order
plant and weighting functions. Controllers with lower
order which also stabilize closed-loop systems and
provide the same level of closed-loop performance
will be investigated. The lower-order controller can be
found by controller reduction technique. Coprime
factor controller reduction for linear time invariant
(LTI) and time varying systems has been published by
several authors [8,12,13]. Recently, some authors
[7,11] have generalized balanced truncation (BT)
corresponding results of LTI systems to reduce the
order of unbounded rate linear parameter varying
(LPV) model and controller. Balanced singular
perturbation approximation (BSPA) to reduce the
controller of LTI systems have been published by
several authors [6,9]. Further, Widowati, et.al [10]
generalized the BSPA method to reduce the model
order of unstable LPV systems.

In this paper we propose a generalization of the
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BSPA method to reduce the order of LPV controller
via contractive right coprime factorization (CRCF).
Feasible solution for constructing quadratically stable
CRCF controller of linear mafrix inequality is
evaluated at each of polytope vertices. Furthermore,
by using a state transformation matrix CRCF
parameter varying controller is balanced and then
generalized singular perturbation method is applied to
obtain reduced-order polytopic LPV controllers.

The paper is outlined as follows. In Section 2 we
summarize polytopic model and necessary condition
for quadratic stability of parameter varying systems.
Design technique for constructing full-order
parameter varying controller is presented in Section 3.
Section 4 proposes main results regarding the
generalization of singular perturbation method for LTI
systems to reduce the order of parameter varying
controller via right coprime factorization. In Section 5
the validity of the proposed controller reduction
method is examined for reducing vibration of flexible
structures. Finally, conclusions are given in Section 6.

2. BRIEF REVIEW OF POLYTOPIC
PARAMETER VARYING SYSTEMS

This section presents a brief review of polytopic
model and quadratic stability of the LPV systems.
Readers are referred to references [2-5,11] for further
details.

For a compact set P < R’, the parameter variation
set [, denotes the set of all piecewise continuous

mapping R (time) into P with a finite number of

discontinuity in any interval. F,:= {p(t):]R—)P,
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Ph. < Ph Sphmax,hzl,Z,...,s} .
PcR® functions
AR 5R™, B:R* 5R"™ | C:R' >R,

D:R¥ 5 R represent 7 th-order LPV systems,
P(p), whose dynamics evolve as

A compact set

along with continuous

5(1) = 4(p(6) x(1) + B(p(D) (1), M
(1) =C(p0)x(0) + D(pO))u(t), peF,.  (2)
Further, matrix polytopes [3] are defined as the

convex hull of a finite number of matrices N; with the
same dimensions, that is,

I
Co{N;i=12,,1} = {Zai(t)Ni ;1) 20,
=1

[
>a(t)= 1}.
i=1

If the parameter p(¢) takes values in a box of R’
with corners { pi}f.lzl (l :25) , of in other words,

p(t) varies in a polytope © with vertices p;,
o, then  p(f) plr) e
©:=C,{p,.... o1}, Vr=0.LPV systems are called
polytopic when it can be represented by state space
matrices A(p(1)), B(p(1), C(p(n), D(p®),
where the parameter vector p(f) ranges over a fixed
polytope @, and the dependence of A(.), B(.),
C(), D() on p(t) is affine. Although not fully

general, this description encompasses many practical
situations [2,3]. From the above characterization, the

state space matrices A4(p(1)), B(p(t)), C(p()),
and D(p(r)) range in a polytope of matrices whose

can be written as

vertices are the images of the vertices p -, p;,
that is,

{A(p(r)) B(p(ﬂ)}ec {Af BI}Z
Clp®) D(p@)] |G D 3
R 5 3)
‘:{Z“"(”{q Djzaio)zo,Zaf(f):]}

i=1 i=l
Al p(t
The above equation indicates that (p)
Clp1)
B(p(1))

D{p(1))

} is a convex combination from systems

!

. B

! DI} . The following proposition
=1

matrices {
i i

provides a necessary condition for quadratic stability
and Ly-induced norm bound y of LPV systems.

Proposition 1 [5,11]: The LPV systems P(p)

with state space matrices in (1-2) is quadratically
stable and satisfies

3

2
””2

”P( p)\]i = sup  sup <y, (4)

p(eF, u#0uel,

if there exists a constant positive-definite matrix X
such that

XA4(p)+ A" (p0)) X +CT (p(1))C (o)) +
(X¥B(p()+C" (p(1) D(p0))x

(721=D7 () Do) =

(XB( p(0)+C" (pt))D( p(t)))T <0,vp(r) eF,.
)

3. FULL-ORDER PARAMETER VARYING
CONTROLLER

In this section, we discuss design technique for
constructing full-order parameter varying controller
which developed by Apkarian |1]. The technique is
formulated as Linear Matrix Inequality (I.MID)
problems, that is, we find symmetric positive definite
matrices which solve LMI expressions. Suppose the
parameter varying generalized plant - G(p) is

described as follows

#(0) = A( (1)) x(0) + By (p(0)) (1)

+ By ( p(1))u(t), ©
z(t) = G, ( p() ) x(0) + Dyy ( p(0)) w(t) o
+ Dy (p(0)) u(t),
2(#) = Cy (p(6))x(8) + Dyy ( p0)) wi1) )
+ Dy, (p(0) u(®),

where w is the exogenous inputs, u is the control
inputs, y is the measured outputs, and z is the
controlled outputs.

The generalized plant can be written in polytopic
form

A(p)  B(p®)  By(p®)
G(p(1) D) Dp(p®)|e
Cy(p(0) Dy (p(M) Dy(p®)
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I

4 B; By
Coyl G Dy Diy; . )
Gy Dy Doy

i=1

Furthermore, we will find a full-order parameter
varying controller, K (), with state space realizati-

ons is
2 (1) = 4 () % (1) + B (p()) (1), (10)
u(®) = C (p(1)) x4 () + Dy (p(1)) ¥(0), (n)

which satisfies H., performance criterion [11], i.e., the
parameter varying closed-loop system (6-11) is
quadratically stable over ® and the L, gain of the
parameter varying closed-loop system is bounded by
7, >0 for all possible parameter trajectories. The
basic characterization of the full-order parameter
varying controller is given in the next theorem.
Theorem 1 [1]: Consider the generalized LPV
plant with polytopic form (9). There exists a polytopic
LPV controller enforcing quadratic stability and a
bound vy, (y > 0), on the L, gain of the closed-loop
system, whenever there exist symmetric positive
definite matrices Y and Z and quadruples

(Zh,gki,éki,ﬁki) such that the following LMI
problems is feasible

[Y4; + ByCy; +(*) *
—r _
Aj AZ + By;Cpy + (*)
- T = T
(YBy +ByiDy;)  (Bi +Bai + DyDay; )
| i + Dy Dy Gy Ciiz+Dy;, Chi (12)
£ £ 3
* £
<0,
Dyy; + DypiDyi Dy =y
R (13)
>0,
A ‘
where i=1,2,...,/, terms denoted * will be induced
by symmetry.
Example:

{M+N+(*) *]2 M+MT+N+NT OF
o Pl 0 P

When the above LMI problem holds a polytopic
LPV controller can be obtained by using the following
procedure

1. Obtain N and M which satisfy

1-YZ=NM".
2. Construct 4y;, By, Cy, Dy with

1 = ~ \T ~ ~ T
Ay =N (A,a. ~(4,) -¥(By)z- Ck,.)M ,
where Ay = 4 + By;D},Cy;, By = 4; — By Dy Cyy
Ci = BCoiZ +YBy, Gy

/5 =
By =N (Bki - YBZkai)’
i = Diiri=1,2,...1.
State-space realizations of the polytopic parameter
varying controller are obtained as follows

A (p(0) B (p® } Zl: [ i Bki:l
(0 ,
[Ck (p() Di(p®)| S 1 Cu Dy 14

a; ()20, > (=1,

i=1

which ensures quadratic stability and bound 7,
(}/ >0) on the L, gain of the closed-loop systems
over the entire parameter polytope ©.

4. CRCF CONTROLLER REDUCTION USING
GENERALIZED BSPA

Our aim in this section is to propose results
regarding the generalization of balanced singular
perturbation approximation (SPA) for time invariant
systems to reduce the order of parameter varying
controller via contractive right coprime factorizations
(CRCF). For the definition of CRCF refers to Wood,
et. al [11]. The following lemma is required to derive
CRCF of an LPV controller K(p) where the
dependence of parameter vectors on ¢ has been
omitted for notation simplicity.

Lemma 1 [11}: Let K (p) have a continuous,

quadratically stabilizable, and quadratically detectable
state space realization. Let Fj (p) and L, (p) such

that A4, (p)+By(p)Fi(p) and A4 (p)+Li(p)
C; (p)are quadratically stable for all p € ® . Define
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4.(p) | L(p) ~Bi(p)
oy |
V(p) -Ulp)| |F(p) | 0 I

Glp) | 1 -Di(p)

where

A (P)= 4. (p)+ Ly (p)Ci(p).

By (p)=Bi(p)+ L (P) Di (p).
then
{{f(p) Y(p) }{U(p) f(p)} ;

Vip) UV (p) X(p)]
Deﬁnition 1 [11]: The ordered pair
[U (p) ] represents a CRCF of K (p) if
L -t
2. There exist X(p) , Y(p) such that

X(p)U(p)+Y(p)V (p)=1

3. [UT (p) VT(p)} is a contraction in the

following sense

{U (p)
u

7(p)

Consider the CRCF existence of the m -order

parameter varying controller K( p), in the next
theorem.

sup sup
p(t)eIFp ueLZ:”u”2 <1

<l. (15)

Theorem 2: Let K(p) has a continuous,

quadratically stabilizable, quadratically detectable
realizations, then CRCF of K ( p) is given by a right

coprime factorization (RCF) of the

A4(p) | Bi(p)
{U(p)i‘z B (16)
V(P)| | C(p) | Di(p)|

Fi(p) | I

where is Fi(p)=-B] (p)X, X=X'>0 a

feasible solution of the following inequality
X4y (p)+4( (p)X - XB, (p)By (p) X <0,
Vpe®.

Proof: We will use Proposition 1 to show that the
RCF parameter varying controller (12) is quadratically
stable and contractive. We need to show that there

exists a matrix x=xT>0 such that

X4 (p)+ 4 (p) X +Ci (p)Ci () +
FL (p)Fi(p) +|XBi (p)+ Cf (p) Dy (p) + F (p)]
x(y*1-Df () Dy (r)
(X8, (0)+CL (0) D (p)+ F (o)) <0.  (7)
VpeO.
Firstly, observe that by using Fj ( p)=~B,€ (p)X,
we have
X4 (p)= X4, (p) - XB ( )Bi (p).
{XBk(p)-l-Ck (p) Dy (p)+F ( }

:{XBk<p>+ck <p>Dk<p>—mk(p>} (18)

=(Ce(p)+ D (P)Fe () Di(p)
= Ci (0)Di ()~ XBi (p) Di () Dt (p)-

Now, by using (18), (19), and F (p)=-Bf (p) X,
(17) is equivalent to the following expression

XA (p)+ 4L (P) X - XB, (p) By (p) X <0,

(20)
Ype®.

The above expression indicates that there exists

X=xT >0 such that (17) is negative definite.
Based on Proposition 1 and Definition 1, the system
(16) is quadratically stable and contractive. These
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imply that U(p) and V(p) are both quadratically
stable with V¥ (p) invertible. We can construct
K(p)=U(p)V ' (p). Moreover, using state-space

realization in Lemma 1 and the detectability of
K(p) we can find a left inverse for K(p), ie.,

X(p) and Y(p) such that
X{(p)U(p)+Y(p)¥(p)=1. From these results, it
can be seen that the ordered pair [U ( p) V( p)]

represents the CRCF of K(p) and the proof is

completed.
Now let symmetric positive definite matrices P
and O be the controllability and observability

Gramians of the [U(p)} .

V()

: U(p) :
According to the as in (16), P and Q

V(p)

satisfy the following Lyapunov inequalities

there exists

A (P)P + PA{ (p)+ B, (P)B (p) <0, Vpe®, (21)
AL (0)0+ 04 (p)+Cf (0)Ci(p)

r (22)
+F; (p)F(p) <0, Vpe®.

By Schur complement and changing variable
p=p! and Q:Q‘1 , the above inequality is
equivalent to the following LMIs

PA(p)+ A ()P PB.(p)]_, o)

i B,{ ‘.0)15 ~I ’

04 (p)+ 4 ()0 OC] U’)}O, o

L Glp) -1

_}1) é}o, (25)
where C, (p):{ck () +}§’E£’;)Fk ('D)} The solu-

tions of (21) and (22) can be found by taking the
inversion of the feasible solutions of the above LMIs
(23-25).

By using a balancing state transformation matrix
we obtain the transformed controllability and
observability Gramians

1’5=Q=Z=diag(21,22),with pP=r'PT T,
QZTTQT, Elzdiag((fl,---,o‘r),

%) =diag(o-r+l""’o.m)9 Gy > 0yi1s and

;=4 (PQ), 0;> 0.1,

j=L2,rr+1,m

Further, we'call o; as $-singular values.
A balanced parameter varying CRCF of K(p) can
be expressed by

A4 (P)+Bi(P)F(p) | Bi(p)

|- |

V(p)} Ci(P)+Dp(P)F(P) | Dilp)|
F(p) |

(26)
where
4 (p) =T 4 (p)T. By (p)=T"'B (p),
Ce(p)=Ce (9T By (p) =B (o).

Partition the balanced parameter varying CRCF
conformably with T =diag(%;,Z,) as follows

A A

Az (p) Aulp B (p
{U(")} | @
Cai(p) §k12 (p) | Di(p)
L Fulp) Fale) | 1

)= 4z (
p)= A (P) +Ba (P)Fkl (p)
)= 422 (P) + Bz (P) Fra ()
Cri(P)=Cu(p)+ D (P)Fu (p)s
Ci2(P) = Cia (P)+ D () Fiz (P),
with
A1 €R™, Ay eR7 4o e RV,
Aypyy e RTXND) DB RTTY

(m—r)xmy, , ékl c R™*" , 6k2 c ]Rmux(m‘r)’

B—kZ cR

ﬁk] c Rmyxr’ F}p c Rmyx(mmr)‘

When the system is balanced, states corresponding to
3 -smaller singular values (22( p)) represent the
fast dynamics of the systems (i.e. its states have very
fast transient dynamics and decay rapidly to certain
steady value). Based on the concept of the singular
perturbation method [6,9], we set the derivative of all
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states corresponding 2, equal to zero. Moreover, the
generalized singular perturbation method can be
applied to approximate balanced CRCF (27) where
state space matrices are evaluated at each of the
polytope vertices as follows.

A i = A1 + ByiF - (Auro; + By Fros )%
(Zk22i + EkZiﬁkZi)A (Zkzu + By Fyy )
By ;=By; —(ka +Ek1iﬁk2i)><
(Zk22i + EkZiF’kZz‘)ﬁ] By
Chai = Cpay + Dy Fy; - (6k2i + Dy Fp; ) x
(Zk22i +BioiFyai )—1 (Zk22i + BioiFpa )-1 x
(Zk2li + Ek2iﬁkli) ,
Choi = Foti = Fo (Zk22i + BioiFra; )_1 x
(Zk21i + EkZiF}c]i) >
Dy,,i = Dy; _(5k2i + Dkiﬁk2i)><
(ZkZZi * Ekzifldi)*l By
Dyyyi =1 = Fyoi (Aya2; + BroiFns )4 By
by assuming (Zk22i + EkZiFkZi) invertible for all

i=1,2,...,[. State space realizations of U{p) and

V( p) are expressed as follows

) By

(jkur (f)) l)kur (/?)
/ A, B, .
:=Za,-(r{ v "} (28)

/
a;(1)20, Y a;(f) =1,
i=1
[Ak,(p) B (p)]

Cn, (#) Doy, ()

i B 29)
Crui Divi |

V. (p)=

_Za,-(r{

i=1

[
a;(1)20, D a;(f)=1

i=1

and we find reduced-order polytopic parameter
varying controller , r-order, in the form

(30)

'Dk:},ickv,i (P) BkriDl;lri

i
2

-1 -1
il Chuyi = PratyiDry, i Cri Drtyi P,

/
a;(1) =20, Y a;(t)=1.

i=1

The closed loop performance caused by using the
reduced order controller is given in the following
theorem.

Theorem 3: Let K(p) be the full-order
controller and K, (p) is the reduced-order LPV
controller using BSPA. If fzwq (p) is a transfer

function of closed loop system with reduced-order
controller K, (p), T.,(p) is balanced reduced

transfer fuction of closed loop system using singular
perturbation approach, and T7,,(p) is a transfer

function of closed loop system with the full order
K(p) then  T,.(p)=T,(p),
T, wwq(p) is quadratically stable, and ”T i)

controller

m
Tovg (,o)"i2 <2y &, where §; is the singular
’ j=r+l
values of the balanced transfer function of closed-loop
system.

Proef: Proof of the theorem is not so difficult, but
since too long, we give the outline i.e., the transfer
function of the closed-loop system with the full-order
controller T,,(p) is balanced, and then it is

truncated by using the singular perturbation, we
obtain f’zw( p). By algebra manipulation, we can

show that 7, (p)="T,,(p). Based on the balanced
truncation property [13], the stability of 7 Jo ( p)

and HTZW(p)~fZWq(p)’i2S2§:5j , can be

J=r+l
obtained.

5. SIMULATION RESULTS

To examine the capability of the proposed method,
a simulation is carried out by applying it to reduce the



842 Roberd Saragih and Widowati

vibration of flexible structures. The structure has four
stories and is tower-like in shape. Each story is
modeled such that it has a single-degree-of-freedom in
the transverse direction (the same direction as the
excitation) and one more degree-of-freedom in the
angle of torsion around the centroid of the story. Thus,
the whole structure has 8 degrees-of-freedom. Due to
an auxiliary mass on the right side at the third layer,
the structure has the long sides and the short sides
symmetric with respect to the central axis, which
thereby creates a coupling between the transverse and
torsional vibration. At the base, the structure is
connected to a shaker where the entire structure is
shaken in the direction of its short sides.

The matrix equation of motion of the structure can
be expressed as [9]:

M, (p)io(t)+C, (p)io()

31
+KP(p)xO(t)+dp2(t)+bpf(t)=O’ (31)

where M P C Do and K p are inertia, damping and
stiffness matrices of the structure, respectively. d,, is

disturbance matrix for the excitation acceleration Z
and b, is input matrix for the control force f. In

this case, the variation of parameters lies on the M ,.

Except for the 3rd story, the mass distribution of each
story is homogeneous and the stiffnesses of 4 columns
are supposed to be the same in the direction of the
excitation at all stories. Therefore distance from
centroid to the spring of right and left sides of 3rd
story become unequal, the cross terms have certain
value, and the structure possesses transverse torsional
coupled vibration modes. Two active dynamic
absorbers are installed on the left and the right sides of
the top layer symmetrically with respect to the long
side, which enable the application of control force
along the direction of the short side. Each dynamic
vibration absorber consists of a moving mass, a
supporting roller bearing, and a coil.

For control analysis and design purposes, the model
of structure, absorbers, and strokes are transformed
into the state space form as is given in (6-8). The
model dynamic of structure can be affected by
operating conditions such that the linear parameter
varying framework can be used to represent structural
dynamic. The framework represents the dynamic with
dependency on operating parameter as a set of state
space matrices that are affine functions of those
parameters, as given in (3).

5.1. Full-order controller design

The purpose of the controller design is to flatten the
peaks of the open-loop transfer function from the
excitation acceleration to the right acceleration output

on the first and second modes. For this purpose we
utilize the 4th-order frequency weighting high-pass
filter. The state equation of the frequency weighting
filter is

Wy = Levx

sty 4§,a)ls3 + 2(25,2 + 1)a),2s2 + 4(,‘,a)l3s + 0)14

st + 4§ha)hs3 + 2(25;% + l)a)is2 + 4§ha)2s + a)f,'
(32

where Lev =400,
&, =0.6.

The controller can also change with the operating
parameters so that the state space matrices of this
controller can be written as an affine combination of
matrices multiplied by the element of parameters, as
given in (14). The advantage of the LPV controller is
that the closed-loop system be stabilized for any value
of parameter and also for any time-varying trajectory
of parameter. In addition, the closed-loop system
satisfies an He-norm bound on the worst case gain
from disturbances to the errors for any parameter. The
full-order controller is designed according to the
design procedure developed by Apkarian, et al. [1]
and we obtain the 30th-order controller.

wy =6ﬂ',

5] = 06, ay, = 3677,

5.2. Reduced-order controller

By using (30), the full-order controller is reduced.
The frequency response of the open-loop, the closed-
loop with the high-order controller, and the closed-
loop with the 7th-order controller are given in Fig. 1.
From this figure, we see that the first mode’s gain the
open-loop transfer function from the excitation to the
right acceleration output can be reduced by about 15
dB and 8 dB for the second mode by using the full-
order controller. This performance can be maintained
although the full-order controller is reduced up to 7th-
order except for the 8th-order controller which yields
unstable in the closed-loop system. The performance
of the closed-loop system with the full-order
controller and the reduced-order controllers are
compared, as shown in Table 1. From Table 1, we can
see that the performance of the full-order controller is
nearly same as that of the reduced-order controllers.

Table 1. Ho-norms of closed-loop system with the
full-order controller and the reduced-order

controller.
. 20 15
I (O, =T (P)|, | 0.0027 | 0.0074
12 10 9 7
0.0067 | 0.0072_| 0.0075 | 0.0054
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___: No controller
————— : Full-order controller
—.—.~: Tth—order controller

-80 5 . -
10 10 10° 10°
Frequency (rad/sec)

Fig. 1. Frequency response of the full-order and
reduced order controller.

the fourth story

Displacement(m)

- no controller
——————— : full-order controller
—.—.—.—: 7th—order controller

0.5 1 1.5 2
Time(sec)

Fig. 2. Transverse response of the full-order and
reduced-order controller.

x 107 the fourth story

______:nocontroller

Displacement(rad)

Time(sec)

Fig. 3. Torsional response of the full-order and
reduced-order controller.

The impulse response of the transverse and torsional
displacements for the forth story is given in Figs. 2

and 3, respectively. From those figures, we can
conclude that the performance of the reduced-order
controller is identical to that of the full-order
controller.

6. CONCLUSIONS

We have derived sufficient conditions for the CRCF
existence of the parameter varying controller. We also
have  generalized the singular  perturbation
approximation to reduce the order of the polytopic
parameter varying controller based on contractive
right coprime factorizations. The reduced-order
controller can be obtained by setting to zero the
derivative of all states corresponding to the 4 —
smaller singular values of the contractive right
coprime factorizations and the closed loop
performance caused by using the reduced order
controller is obtained. The reduced order controller is
applied to reduce the vibration of flexible structures.
From the simulation results, the proposed method can
be reduced the order of controller into the 7th-order.
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