• Title/Summary/Keyword: Z(sub)p-extension

Search Result 9, Processing Time 0.029 seconds

COHOMOLOGY GROUPS OF CIRCULAR UNITS

  • Kim, Jae-Moon;Oh, Seung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.623-631
    • /
    • 2001
  • Let $\kappa$ be a real abelian field of conductor f and $\kappa$(sub)$\infty$ = ∪(sub)n$\geq$0$\kappa$(sub)n be its Z(sub)p-extension for an odd prime p such that płf$\phi$(f). he aim of this paper is ot compute the cohomology groups of circular units. For m>n$\geq$0, let G(sub)m,n be the Galois group Gal($\kappa$(sub)m/$\kappa$(sub)n) and C(sub)m be the group of circular units of $\kappa$(sub)m. Let l be the number of prime ideals of $\kappa$ above p. Then, for mm>n$\geq$0, we have (1) C(sub)m(sup)G(sub)m,n = C(sub)n, (2) H(sup)i(G(sub)m,n, C(sub)m) = (Z/p(sup)m-n Z)(sup)l-1 if i is even, (3) H(sup)i(G(sub)m,n, C(sub)m) = (Z/P(sup)m-n Z)(sup l) if i is odd (※Equations, See Full-text).

  • PDF

COHOMOLOGY GROUPS OF CIRCULAR UNITS IN ℤp-EXTENSIONS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.173-180
    • /
    • 2000
  • Let $k$ be a real abelian field such that the conductor of every nontrivial character belonging to $k$ agrees with the conductor of $k$. Note that real quadratic fields satisfy this condition. For a prime $p$, let $k_{\infty}$ be the $\mathbb{Z}_p$-extension of $k$. The aim of this paper is to produce a set of generators of the Tate cohomology group $\hat{H}^{-1}$ of the circular units of $k_n$, the $nth$ layer of the $\mathbb{Z}_p$-extension of $k$, where $p$ is an odd prime. This result generalizes some earlier works which treated the case when $k$ is real quadratic field and used them to study ${\lambda}$-invariants of $k$.

  • PDF

Lr INEQUALITIES FOR POLYNOMIALS

  • Reingachan N;Mayanglambam Singhajit Singh;Nirmal Kumar Singha;Khangembam Babina Devi;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.451-460
    • /
    • 2024
  • If a0 + Σnν=μ aνzν, 1 ≤ µ ≤ n, is a polynomial of degree n having no zeroin |z| < k, k ≥ 1 and p'(z) its derivative, then Qazi [19] proved $$\max_{{\left|z\right|=1}}\left|p\prime(z)\right|\leq{n}\frac{1+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|k^{{\mu}+1}}{1+k^{{\mu}+1}+\frac{{\mu}}{n}\left|\frac{a_{\mu}}{a_0} \right|(k^{{\mu}+1}+k^{2{\mu}})}\max_{{\left|z\right|=1}}\left|p(z)\right|$$ In this paper, we not only obtain the Lr version of the polar derivative of the above inequality for r > 0, but also obtain an improved Lr extension in polar derivative.

ON THE IDEAL CLASS GROUPS OF ℤp-EXTENSIONS OVER REAL ABELIAN FIELDS

  • Kim, Jae Moon;Ryu, Ja Do
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.227-233
    • /
    • 1999
  • Let $k$ be a real abelian field and $k_{\infty}={\bigcup}_{n{\geq}0}k_n$ be its $\mathbb{Z}_p$-extension for an odd prime $p$. For each $n{\geq}0$, we denote the class number of $k_n$ by $h_n$. The following is a well known theorem: Theorem. Suppose $p$ remains inert in $k$ and the prime ideal of $k$ above $p$ totally ramifies in $k_{\infty}$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$. The aim of this paper is to generalize above theorem: Theorem 1. Suppose $H^1(G_n,E_n){\simeq}(\mathbb{Z}/p^n\mathbb{Z})^l$, where $l$ is the number of prime ideals of $k$ above $p$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$. Theorem 2. Let $k$ be a real quadratic field. Suppose that $H^1(G_1,E_1){\simeq}(\mathbb{Z}/p\mathbb{Z})^l$. Then $p{\nmid}h_0$ if and only if $p{\nmid}h_n$ for all $n{\geq}0$.

  • PDF

ON THE ANTICYCLOTOMIC ℤp-EXTENSION OF AN IMAGINARY QUADRATIC FIELD

  • OH, JANGHEON
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.323-326
    • /
    • 2015
  • We prove that if a subfield of the Hilbert class field of an imaginary quadratic field k meets the anticyclotomic $\mathbb{Z}_p$-extension $k^a_{\infty}$ of k, then it is contained in $k^a_{\infty}$. And we give an example of an imaginay quadratic field k with ${\lambda}_3(k^a_{\infty}){\geq}8$.

ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS

  • Wali Mohammad Shah;Zahid Bashir Monga
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Let $P(z):=\sum\limits^{n}_{j=0}A_jz^j$, Aj ∈ ℂm×m, 0 ≤ j ≤ n be a matrix polynomial of degree n, such that An ≥ An-1 ≥ . . . ≥ A0 ≥ 0, An > 0. Then the eigenvalues of P(z) lie in the closed unit disk. This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control 52(2007), 2151-2153] is infact a matrix extension of a famous and elegant result on the distribution of zeros of polynomials known as Eneström-Kakeya theorem. In this paper, we prove a more general result which inter alia includes the above result as a special case. We also prove an improvement of a result due to Lê, Du, Nguyên [Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].

EXTENDING HYPERELLIPTIC K3 SURFACES, AND GODEAUX SURFACES WITH π1 = ℤ/2

  • Coughlan, Stephen
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.869-893
    • /
    • 2016
  • We construct the extension of a hyperelliptic K3 surface to a Fano 6-fold with extraordinary properties in moduli. This leads us to a family of surfaces of general type with $p_g=1$, q = 0, $K^2=2$ and hyperelliptic canonical curve, each of which is a weighted complete inter-section inside a Fano 6-fold. Finally, we use these hyperelliptic surfaces to determine an 8-parameter family of Godeaux surfaces with ${\pi}_1={\mathbb{Z}}/2$.