References
-
J. Minardi, Iwasawa modules for
$Z_p^d$ -extensions of algebraic number fields, Ph. D. dissertation, University of Washington, 1986. -
J. Oh, Defining Polynomial of the first layer of anti-cyclotomic
$\mathbb{Z}_3$ -extension of imaginary quadratic fields of class number 1, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 3, 18-19. https://doi.org/10.3792/pjaa.80.18 -
J. Oh, The first layer of
$\mathbb{Z}^2_2$ -extension over imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 9, 132-134. https://doi.org/10.3792/pjaa.76.132 -
J. Oh, , On the first layer of anti-cyclotomic
$\mathbb{Z}_p$ -extension of imaginary quadratic fields, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 3, 19-20. https://doi.org/10.3792/pjaa.83.19 - L. Washington, Introduction to Cyclotomic Fields, Graduate Text in Math. Vol. 83, Springer-Verlag, 1982.
Cited by
- CONSTRUCTION OF THE FIRST LAYER OF ANTI-CYCLOTOMIC EXTENSION vol.21, pp.3, 2013, https://doi.org/10.11568/kjm.2013.21.3.265
- ON THE ANTICYCLOTOMIC ℤp-EXTENSION OF AN IMAGINARY QUADRATIC FIELD vol.23, pp.3, 2015, https://doi.org/10.11568/kjm.2015.23.3.323
- ANTI-CYCLOTOMIC EXTENSION AND HILBERT CLASS FIELD vol.25, pp.1, 2012, https://doi.org/10.14403/jcms.2012.25.1.091