Acknowledgement
Supported by : National Research Foundation of Korea
References
-
R. Barlow, Some new surfaces with
$p_g=0$ , Duke Math. J. 51 (1984), no. 4, 889-904. https://doi.org/10.1215/S0012-7094-84-05139-1 -
R. Barlow, A simply connected surface of general type with
$p_g=0$ , Invent. Math. 79 (1985), no. 2, 293-301. https://doi.org/10.1007/BF01388974 -
F. Catanese and O. Debarre, Surfaces with
$K^2=2$ ,$p_g=1$ , q = 0, J. Reine. Angew. Math. 395 (1989), 1-55. - S. Coughlan, Key varieties for surfaces of general type, University of Warwick PhD thesis, 2009.
- S. Coughlan, Extending symmetric determinantal quartic surfaces, Geom. Dedicata 172 (2014), 155-177. https://doi.org/10.1007/s10711-013-9913-7
-
Y. Lee and J. Park, A simply connected surface of general type with
$p_g=0$ and$K^2=2$ , Invent. Math. 170 (2007), no. 3, 483-505. https://doi.org/10.1007/s00222-007-0069-7 - S. Papadakis and M. Reid, Kustin-Miller unprojection with complexes, J. Algebraic Geom. 13 (2004), no. 2, 249-268. https://doi.org/10.1090/S1056-3911-03-00350-3
-
M. Reid, Surfaces with pg = 0,
$K^2=1$ , J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 25 (1978), no. 1, 75-92. - M. Reid, Infinitesimal view of extending a hyperplane section-deformation theory and computer algebra, Algebraic geometry (L'Aquila, 1988), 214-286, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
- M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium, 1-72, (Kinosaki, Oct 2000), K. Ohno (Ed.), 2000.
- B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639. https://doi.org/10.2307/2373709
- C. Werner, A four-dimensional deformation of a numerical Godeaux surface, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1515-1525. https://doi.org/10.1090/S0002-9947-97-01892-8