• Title/Summary/Keyword: Y/T

Search Result 79,747, Processing Time 0.078 seconds

ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME

  • Vanani, Solat Karimi;Aminataei, Azim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.663-670
    • /
    • 2008
  • In this paper, the aim is to solve the neutral delay differential equations in the following form using multiquadric approximation scheme, (1) $$\{_{\;y(t)\;=\;{\phi}(t),\;\;\;\;\;t\;{\leq}\;{t_1},}^{\;y'(t)\;=\;f(t,\;y(t),\;y(t\;-\;{\tau}(t,\;y(t))),\;y'(t\;-\;{\sigma}(t,\;y(t)))),\;{t_1}\;{\leq}\;t\;{\leq}\;{t_f},}$$ where f : $[t_1,\;t_f]\;{\times}\;R\;{\times}\;R\;{\times}\;R\;{\rightarrow}\;R$ is a smooth function, $\tau(t,\;y(t))$ and $\sigma(t,\;y(t))$ are continuous functions on $[t_1,\;t_f]{\times}R$ such that t-$\tau(t,\;y(t))$ < $t_f$ and t - $\sigma(t,\;y(t))$ < $t_f$. Also $\phi(t)$ represents the initial function or the initial data. Hence, we present the advantage of using the multiquadric approximation scheme. In the sequel, presented numerical solutions of some experiments, illustrate the high accuracy and the efficiency of the proposed method even where the data points are scattered.

POSITIVE SOLUTION FOR SYSTEMS OF NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS ON TIME SCALES

  • Miao, Chunmei;Ji, Dehong;Zhao, Junfang;Ge, Weigao;Zhang, Jiani
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.327-344
    • /
    • 2009
  • In this paper, we deal with the following system of nonlinear singular boundary value problems(BVPs) on time scale $\mathbb{T}$ $$\{{{{{{x^{\bigtriangleup\bigtriangleup}(t)+f(t,\;y(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}\atop{y^{\bigtriangleup\bigtriangleup}(t)+g(t,\;x(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}}\atop{\alpha_1x(a)-\beta_1x^{\bigtriangleup}(a)=\gamma_1x(\sigma(b))+\delta_1x^{\bigtriangleup}(\sigma(b))=0,}}\atop{\alpha_2y(a)-\beta_2y^{\bigtriangleup}(a)=\gamma_2y(\sigma(b))+\delta_2y^{\bigtriangleup}(\sigma(b))=0,}}$$ where $\alpha_i$, $\beta_i$, $\gamma_i\;{\geq}\;0$ and $\rho_i=\alpha_i\gamma_i(\sigma(b)-a)+\alpha_i\delta_i+\gamma_i\beta_i$ > 0(i = 1, 2), f(t, y) may be singular at t = a, y = 0, and g(t, x) may be singular at t = a. The arguments are based upon a fixed-point theorem for mappings that are decreasing with respect to a cone. We also obtain the analogous existence results for the related nonlinear systems $x^{\bigtriangledown\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangledown}(t)$ + g(t, x(t)) = 0, $x^{\bigtriangleup\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangleup\bigtriangledown}(t)$ + g(t, x(t)) = 0, and $x^{\bigtriangledown\bigtriangleup}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangleup}(t)$ + g(t, x(t)) = 0 satisfying similar boundary conditions.

  • PDF

BOUNDEDNESS IN NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Goo, Yoon Hoe
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.723-736
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed differential system $$y^{\prime}= f(t,y)+{\int_{t_{0}}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_{0}}^{t}g(s,y(s))ds,\;h(t, y(t),\;Ty(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.585-598
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties. To show these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Choi, Sang Il;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2017
  • This paper shows that the solutions to the perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties by imposing conditions on the perturbed part ${\int}_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.105-117
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$, have the bounded property by imposing conditions on the perturbed part $\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.

A central limit theorem for sojourn time of strongly dependent 2-dimensional gaussian process

  • Jeon, Tae-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.725-737
    • /
    • 1995
  • Let $X_t = (X_t^(1), X_t^(2))', t \geqslant 0$, be a real stationary 2-dimensional Gaussian process with $EX_t^(1) = EX_t^(2) = 0$ and $$ EX_0 X'_t = (_{\rho(t) r(t)}^{r(t) \rho(t)}), $$ where $r(t) \sim $\mid$t$\mid$^-\alpha, 0 < \alpha < 1/2, \rho(t) = o(r(t)) as t \to \infty, r(0) = 1, and \rho(0) = \rho (0 \leqslant \rho < 1)$. For $t > 0, u > 0, and \upsilon > 0, let L_t (u, \upsilon)$ be the time spent by $X_s, 0 \leqslant s \leqslant t$, above the level $(u, \upsilon)$.

  • PDF

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • This paper shows that the solutions to the perturbed dierential system $$y^{\prime}=f(t,y)+{\int}_{t_o}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded property. To show this property, we impose conditions on the perturbed part ${\int}^{t}_{t_o}g(s,y(s))ds+h(t,y(t),Ty(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

PERTURBATIONS OF FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.225-238
    • /
    • 2019
  • We show the boundedness and uniform Lipschitz stability for the solutions to the functional perturbed differential system $$y^{\prime}=f(t,y)+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^t}g(s,y(s),\;T_1y(s))ds+h(t,y(t),\;T_2y(t))$$, under perturbations. We impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s)$, $T_1y(s))ds$, $h(t,y(t)$, $T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.